2024届福建省石狮七中学中考数学最后冲刺浓缩精华卷含解析_第1页
2024届福建省石狮七中学中考数学最后冲刺浓缩精华卷含解析_第2页
2024届福建省石狮七中学中考数学最后冲刺浓缩精华卷含解析_第3页
2024届福建省石狮七中学中考数学最后冲刺浓缩精华卷含解析_第4页
2024届福建省石狮七中学中考数学最后冲刺浓缩精华卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省石狮七中学中考数学最后冲刺浓缩精华卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A. B.C. D.2.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A. B.1 C. D.3.如图,在中,,分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是()A. B. C. D.4.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A. B. C. D.5.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm21.522.022.523.023.5人数24383学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是()A.平均数 B.加权平均数 C.众数 D.中位数6.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是A. B. C. D.7.如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是A. B. C. D.38.方程x(x-2)+x-2=0的两个根为()A., B.,C., D.,9.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步 B.5步 C.6步 D.8步10.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D,则CD长为()A.7 B. C. D.9二、填空题(共7小题,每小题3分,满分21分)11.函数y=中自变量x的取值范围是_____.12.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=()A.﹣1 B.4 C.﹣4 D.113.如图,在△PAB中,PA=PB,M、N、K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=40°,则∠P的度数为___14.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB周长等于_____.(结果保留根号及π).15.分解因式:4ax2-ay2=________________.16.已知a1=,a2=,a3=,a4=,a5=,…,则an=_____.(n为正整数).17.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是_____.三、解答题(共7小题,满分69分)18.(10分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:7688936578948968955089888989779487889291初二:7497968998746976727899729776997499739874(1)根据上面的数据,将下列表格补充完整;整理、描述数据:成绩x人数班级初一1236初二011018(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)分析数据:年级平均数中位数众数初一8488.5初二84.274(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).19.(5分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=ax+b(0≤x≤3).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w=防辐射费+修路费.(1)当科研所到宿舍楼的距离x=3km时,防辐射费y=____万元,a=____,b=____;(2)若m=90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?20.(8分)如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).(1)求该抛物线的解析式;(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.21.(10分)某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)22.(10分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.23.(12分)老师布置了一个作业,如下:已知:如图1的对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:能找出该同学错误的原因吗?请你指出来;请你给出本题的正确证明过程.24.(14分)某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示AB进价(万元/套)1.51.2售价(万元/套)1.81.4该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元.(1)该公司计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,.故选C.考点:由实际问题抽象出分式方程.2、A【解题分析】∵在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,∴从四张卡片中任取一张,恰好是中心对称图形的概率=.故选A.3、B【解题分析】

根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.【题目详解】解:∵DE是AC的垂直平分线,

∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,

故选B.【题目点拨】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.4、A【解题分析】

∵Rt△ABC中,∠C=90°,sinA=,∴cosA=,∴∠A+∠B=90°,∴sinB=cosA=.故选A.5、C【解题分析】

根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.【题目详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,

则商店经理的这一决定应用的统计量是这组数据的众数.

故选:C.【题目点拨】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.6、A【解题分析】

由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可.【题目详解】解:由题意得,,,由勾股定理得,,.故选:A.【题目点拨】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7、B【解题分析】

如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.【题目详解】解:如图,AB的中点即数轴的原点O.

根据数轴可以得到点A表示的数是.

故选:B.【题目点拨】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键.8、C【解题分析】

根据因式分解法,可得答案.【题目详解】解:因式分解,得(x-2)(x+1)=0,

于是,得x-2=0或x+1=0,

解得x1=-1,x2=2,

故选:C.【题目点拨】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.9、C【解题分析】试题解析:根据勾股定理得:斜边为则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故选C10、B【解题分析】

作DF⊥CA,交CA的延长线于点F,作DG⊥CB于点G,连接DA,DB.由CD平分∠ACB,根据角平分线的性质得出DF=DG,由HL证明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,从而求出CD=.【题目详解】解:作DF⊥CA,垂足F在CA的延长线上,作DG⊥CB于点G,连接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易证△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(这里由CFDG是正方形也可得).∴CD=.故选B.二、填空题(共7小题,每小题3分,满分21分)11、x≥﹣且x≠1.【解题分析】

根据分式有意义的条件、二次根式有意义的条件列式计算.【题目详解】由题意得,2x+3≥0,x-1≠0,解得,x≥-且x≠1,故答案为:x≥-且x≠1.【题目点拨】本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.12、1【解题分析】

据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可.【题目详解】∵点A(a,3)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣3,∴a+b=1,故选D.【题目点拨】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.13、100°【解题分析】

由条件可证明△AMK≌△BKN,再结合外角的性质可求得∠A=∠MKN,再利用三角形内角和可求得∠P.【题目详解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN(SAS),∴∠AMK=∠BKN,∵∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=40°,∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,故答案为100°【题目点拨】本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK≌△BKN是解题的关键.14、π+4【解题分析】根据正方形的性质,得扇形所在的圆心角是90°,扇形的半径是2.解:根据图形中正方形的性质,得∠AOB=90°,OA=OB=2.∴扇形OAB的弧长等于π.15、a(2x+y)(2x-y)【解题分析】

首先提取公因式a,再利用平方差进行分解即可.【题目详解】原式=a(4x2-y2)

=a(2x+y)(2x-y),

故答案为a(2x+y)(2x-y).【题目点拨】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16、.【解题分析】

观察分母的变化为n的1次幂加1、2次幂加1、3次幂加1…,n次幂加1;分子的变化为:3、5、7、9…2n+1.【题目详解】解:∵a1=,a2=,a3=,a4=,a5=,…,∴an=,故答案为:.【题目点拨】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.17、【解题分析】

首先由图可得此转盘被平分成了24等份,其中惊蛰、春分、清明区域有3份,然后利用概率公式求解即可求得答案.【题目详解】∵如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,∴指针落在惊蛰、春分、清明的概率是:.故答案为【题目点拨】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.三、解答题(共7小题,满分69分)18、(1)1,2,19;(2)初一年级掌握生态环保知识水平较好.【解题分析】

(1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;(2)根据平均数、众数、中位数的统计意义回答.【题目详解】(1)补全表格如下:整理、描述数据:初一成绩x满足10≤x≤19的有:1119191119191711,共1个.故答案为:1.分析数据:在761193657194196195501911191929417119291中,19出现的次数最多,故众数为19;把初二的抽查成绩从小到大排列为:6972727374747474767671199697979191999999,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2.故答案为:19,2.(2)初一年级掌握生态环保知识水平较好.因为两个年级的平均数相差不大,但是初一年级同学的中位数是11.5,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.【题目点拨】本题考查了频数(率)分布表,众数、中位数以及平均数.掌握众数、中位数以及平均数的定义是解题的关键.19、(1)0,﹣360,101;(2)当距离为2公里时,配套工程费用最少;(3)0<m≤1.【解题分析】

(1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,即可求解;(2)根据题目:配套工程费w=防辐射费+修路费分0≤x≤3和x≥3时讨论.①当0≤x≤3时,配套工程费W=90x2﹣360x+101,②当x≥3时,W=90x2,分别求最小值即可;(3)0≤x≤3,W=mx2﹣360x+101,(m>0),其对称轴x=,然后讨论:x==3时和x=>3时两种情况m取值即可求解.【题目详解】解:(1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,解得:a=﹣360,b=101,故答案为0,﹣360,101;(2)①当0≤x≤3时,配套工程费W=90x2﹣360x+101,∴当x=2时,Wmin=720;②当x≥3时,W=90x2,W随x最大而最大,当x=3时,Wmin=810>720,∴当距离为2公里时,配套工程费用最少;(3)∵0≤x≤3,W=mx2﹣360x+101,(m>0),其对称轴x=,当x=≤3时,即:m≥60,Wmin=m()2﹣360()+101,∵Wmin≤675,解得:60≤m≤1;当x=>3时,即m<60,当x=3时,Wmin=9m<675,解得:0<m<60,故:0<m≤1.【题目点拨】本题考查了二次函数的性质在实际生活中的应用.最值问题常利函数的增减性来解答.20、(1)y=x2﹣x﹣2;(2)9;(3)Q坐标为(﹣)或(4﹣)或(2,1)或(4+,﹣).【解题分析】试题分析:把点代入抛物线,求出的值即可.先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,联立方程求出点的坐标,最大值=,进而计算四边形EAPD面积的最大值;分两种情况进行讨论即可.试题解析:(1)∵在抛物线上,∴解得∴抛物线的解析式为(2)过点P作轴交AD于点G,∵∴直线BE的解析式为∵AD∥BE,设直线AD的解析式为代入,可得∴直线AD的解析式为设则则∴当x=1时,PG的值最大,最大值为2,由解得或∴∴最大值=∵AD∥BE,∴∴S四边形APDE最大=S△ADP最大+(3)①如图3﹣1中,当时,作于T.∵∴∴∴可得②如图3﹣2中,当时,当时,当时,Q3综上所述,满足条件点点Q坐标为或或或21、(1)商店购进甲种商品40件,购进乙种商品60件;(2)应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.【解题分析】

(1)设购进甲、乙两种商品分别为x件与y件,根据甲种商品件数+乙种商品件数=100,甲商品的总进价+乙种商品的总进价=2700,列出关于x与y的方程组,求出方程组的解即可得到x与y的值,得到购进甲、乙两种商品的件数;(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据甲商品的总进价+乙种商品的总进价小于等于3100,甲商品的总利润+乙商品的总利润大于等于890列出关于a的不等式组,求出不等式组的解集,得到a的取值范围,根据a为正整数得出a的值,再表示总利润W,发现W与a成一次函数关系式,且为减函数,故a取最小值时,W最大,即可求出所求的进货方案与最大利润.【题目详解】(1)设购进甲种商品x件,购进乙商品y件,根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a件,则购进乙种商品(100﹣a)件,根据题意列得:,解得:20≤a≤22,∵总利润W=5a+10(100﹣a)=﹣5a+1000,W是关于a的一次函数,W随a的增大而减小,∴当a=20时,W有最大值,此时W=900,且100﹣20=80,答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.【题目点拨】此题考查了二元一次方程组的应用,一次函数的性质,以及一元一次不等式组的应用,弄清题中的等量关系及不等关系是解本题的关键.22、(1)60,90;(2)见解析;(3)300人【解题分析】

(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【题目详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论