黑龙江省哈尔滨市双城区重点名校2024届中考数学押题卷含解析_第1页
黑龙江省哈尔滨市双城区重点名校2024届中考数学押题卷含解析_第2页
黑龙江省哈尔滨市双城区重点名校2024届中考数学押题卷含解析_第3页
黑龙江省哈尔滨市双城区重点名校2024届中考数学押题卷含解析_第4页
黑龙江省哈尔滨市双城区重点名校2024届中考数学押题卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市双城区重点名校2024届中考数学押题卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在﹣3,0,4,这四个数中,最大的数是()A.﹣3 B.0 C.4 D.2.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A. B. C. D.3.运用乘法公式计算(4+x)(4﹣x)的结果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x24.已知二次函数的图象如图所示,则下列结论:①ac>0;②a-b+c<0;

当时,;,其中错误的结论有A.②③ B.②④ C.①③ D.①④5.若代数式有意义,则实数x的取值范围是()A.x>0 B.x≥0 C.x≠0 D.任意实数6.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值27.如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3πcm,则滑轮上的点F旋转了()A.60° B.90° C.120° D.45°8.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A11B11C11D11E11F11的边长为()A. B. C. D.9.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有()A.2个 B.3个 C.4个 D.5个10.的值是A. B. C. D.11.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是()A. B.C. D.12.式子有意义的x的取值范围是()A.且x≠1 B.x≠1 C. D.且x≠1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在一个不透明的袋子里装有一个黑球和两个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是__________.14.如图,Rt△ABC中,∠C=90°,AB=10,,则AC的长为_______.15.因式分解:3a3﹣3a=_____.16.因式分解:.17.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.18.若分式a2-9a+3三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5(1)求BC的长;(2)如果两条对角线长的和是20,求三角形△AOD的周长.20.(6分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:;(2)若△OCP与△PDA的面积比为1:4,求边AB的长.21.(6分)已知平行四边形.尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:.22.(8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.23.(8分)计算:|﹣1|﹣2sin45°+﹣24.(10分)某商场柜台销售每台进价分别为160元、120元的、两种型号的电器,下表是近两周的销售情况:销售时段销售数量销售收入种型号种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入—进货成本)(1)求、两种型号的电器的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求种型号的电器最多能采购多少台?(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.(10分)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根都是整数,求k的值.26.(12分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目

频数(人数)

羽毛球

30

篮球

乒乓球

36

排球

足球

12

请根据以上图表信息解答下列问题:频数分布表中的,;在扇形统计图中,“排球”所在的扇形的圆心角为度;全校有多少名学生选择参加乒乓球运动?27.(12分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:销售单价x(元/kg)

120

130

180

每天销量y(kg)

100

95

70

设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,在﹣3,0,1,这四个数中,﹣3<0<<1,最大的数是1.故选C.2、A【解题分析】试题分析:观察图形可知,该几何体的主视图是.故选A.考点:简单组合体的三视图.3、B【解题分析】

根据平方差公式计算即可得解.【题目详解】,故选:B.【题目点拨】本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.4、C【解题分析】

①根据图象的开口方向,可得a的范围,根据图象与y轴的交点,可得c的范围,根据有理数的乘法,可得答案;

②根据自变量为-1时函数值,可得答案;

③根据观察函数图象的纵坐标,可得答案;

④根据对称轴,整理可得答案.【题目详解】图象开口向下,得a<0,

图象与y轴的交点在x轴的上方,得c>0,ac<,故①错误;

②由图象,得x=-1时,y<0,即a-b+c<0,故②正确;

③由图象,得

图象与y轴的交点在x轴的上方,即当x<0时,y有大于零的部分,故③错误;

④由对称轴,得x=-=1,解得b=-2a,

2a+b=0

故④正确;

故选D.【题目点拨】考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.5、C【解题分析】

根据分式和二次根式有意义的条件进行解答.【题目详解】解:依题意得:x2≥1且x≠1.解得x≠1.故选C.【题目点拨】考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.6、D【解题分析】设抛物线与x轴的两交点间的横坐标分别为:x1,x2,

由韦达定理得:x1+x2=m-3,x1•x2=-m,则两交点间的距离d=|x1-x2|==,∴m=1时,dmin=2.故选D.7、B【解题分析】

由弧长的计算公式可得答案.【题目详解】解:由圆弧长计算公式,将l=3π代入,可得n=90,故选B.【题目点拨】本题主要考查圆弧长计算公式,牢记并运用公式是解题的关键.8、A【解题分析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=()10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,则正六边形A11B11C11D11E11F11的边长=()10×2=.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.9、B【解题分析】

根据二次函数的图象与性质判断即可.【题目详解】①由抛物线开口向上知:a>1;抛物线与y轴的负半轴相交知c<1;对称轴在y轴的右侧知:b>1;所以:abc<1,故①错误;②对称轴为直线x=-1,,即b=2a,所以b-2a=1.故②错误;③由抛物线的性质可知,当x=-1时,y有最小值,即a-b+c<(),即a﹣b<m(am+b)(m≠﹣1),故③正确;④因为抛物线的对称轴为x=1,且与x轴的一个交点的横坐标为1,所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;⑤由图像可得,当x=2时,y>1,即:4a+2b+c>1,故⑤正确.故正确选项有③④⑤,故选B.【题目点拨】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.10、D【解题分析】

根据特殊角三角函数值,可得答案.【题目详解】解:,故选:D.【题目点拨】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.11、D【解题分析】试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故选D.考点:作图—复杂作图.12、A【解题分析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】

首先根据题意列表,由列表求得所有等可能的结果与两次都摸到黑球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【题目详解】列表得:第一次第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9种等可能的结果,两次都摸到黑球的只有1种情况,∴两次都摸到黑球的概率是19故答案为:19【题目点拨】考查概率的计算,掌握概率等于所求情况数与总情况数之比是解题的关键.14、8【解题分析】

在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的长.【题目详解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案为8.【题目点拨】此题主要考查锐角三角函数在直角三形中的应用及勾股定理.15、3a(a+1)(a﹣1).【解题分析】

首先提取公因式3a,进而利用平方差公式分解因式得出答案.【题目详解】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案为3a(a+1)(a﹣1).【题目点拨】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.16、;【解题分析】

根据所给多项式的系数特点,可以用十字相乘法进行因式分解.【题目详解】x2﹣x﹣12=(x﹣4)(x+3).故答案为(x﹣4)(x+3).17、0.7【解题分析】

用通话时间不足10分钟的通话次数除以通话的总次数即可得.【题目详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.故答案为0.7.18、1.【解题分析】试题分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.试题解析:∵分式a2∴a2解得a=1.考点:分式的值为零的条件.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)8;(2)1.【解题分析】

(1)由平行四边形的性质和已知条件易证△AOE≌△COF,所以可得AE=CF=3,进而可求出BC的长;(2)由平行四边形的性质:对角线互相平分可求出AO+OD的长,进而可求出三角形△AOD的周长.【题目详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF,∴AE=CF=3,∴BC=BF+CF=5+3=8;(2)∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AD=BC=8,∵AC+BD=20,∴AO+BO=10,∴△AOD的周长=AO+BO+AD=1.【题目点拨】本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.20、(1)详见解析;(2)10.【解题分析】

①只需证明两对对应角分别相等可得两个三角形相似;故.

②根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.【题目详解】①∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.∴∠APO=90°.∴∠APD=90°−∠CPO=∠POC.∵∠D=∠C,∠APD=∠POC.∴△OCP∽△PDA.∴.②∵△OCP与△PDA的面积比为1:4,∴OCPD=OPPA=CPDA=14−−√=12.∴PD=2OC,PA=2OP,DA=2CP.∵AD=8,∴CP=4,BC=8.设OP=x,则OB=x,CO=8−x.在△PCO中,∵∠C=90∘,CP=4,OP=x,CO=8−x,∴x2=(8−x)2+42.解得:x=5.∴AB=AP=2OP=10.∴边AB的长为10.【题目点拨】本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.21、(1)见解析;(2)见解析.【解题分析】试题分析:(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,据此可得出结论.试题解析:(1)如图所示,AF即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考点:作图—基本作图;平行四边形的性质.22、(1)15人;(2)补图见解析.(3).【解题分析】

(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【题目详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=.【题目点拨】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.23、﹣1【解题分析】

直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【题目详解】原式=(﹣1)﹣2×+2﹣4=﹣1﹣+2﹣4=﹣1.【题目点拨】此题主要考查了实数运算,正确化简各数是解题关键.24、(1)A型电器销售单价为200元,B型电器销售单价150元;(2)最多能采购37台;(3)方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.【解题分析】

(1)设A、B两种型号电器的销售单价分别为x元、y元,根据3台A型号4台B型号的电器收入1200元,5台A型号6台B型号的电器收入1900元,列方程组求解;(2)设采购A种型号电器a台,则采购B种型号电器(50−a)台,根据金额不多余7500元,列不等式求解;(3)根据A型号的电器的进价和售价,B型号的电器的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案.【题目详解】解:(1)设A型电器销售单价为x元,B型电器销售单价y元,则,解得:,答:A型电器销售单价为200元,B型电器销售单价150元;(2)设A型电器采购a台,则160a+120(50−a)≤7500,解得:a≤,则最多能采购37台;(3)设A型电器采购a台,依题意,得:(200−160)a+(150−120)(50−a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.【题目点拨】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.25、(3)证明见解析(3)3或﹣3【解题分析】

(3)根据一元二次方程的定义得k≠2,再计算判别式得到△=(3k-3)3,然后根据非负数的性质,即k的取值得到△>2,则可根据判别式的意义得到结论;(3)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k的值.【题目详解】证明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论