版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省上饶市广信区广信区第七中学2024届中考适应性考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.y=(m﹣1)x|m|+3m表示一次函数,则m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣12.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9π B.10π C.11π D.12π3.如图,与∠1是内错角的是()A.∠2B.∠3C.∠4D.∠54.若a与5互为倒数,则a=()A. B.5 C.-5 D.5.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是()A.B.C.D.6.等式组的解集在下列数轴上表示正确的是(
).A.
B.C.
D.7.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为πcm2,则扇形圆心角的度数为()A.120° B.140° C.150° D.160°8.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|9.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是()A.2011﹣2014年最高温度呈上升趋势B.2014年出现了这6年的最高温度C.2011﹣2015年的温差成下降趋势D.2016年的温差最大10.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm二、填空题(本大题共6个小题,每小题3分,共18分)11.已知双曲线经过点(-1,2),那么k的值等于_______.12.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为______.13.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.14.如图,已知点C为反比例函数上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为___________.15.如图,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_____.16.如图,已知,第一象限内的点A在反比例函数y=的图象上,第四象限内的点B在反比例函数y=的图象上.且OA⊥OB,∠OAB=60°,则k的值为_________.三、解答题(共8题,共72分)17.(8分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.18.(8分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.19.(8分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)20.(8分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).21.(8分)如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。甲,乙两位同学对条件进行分析后,甲得到结论①:“E是BC中点”.乙得到结论②:“四边形QEFP的面积为S”。请判断甲乙两位同学的结论是否正确,并说明理由.22.(10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分钟)10103503020850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?23.(12分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.求证:BC是⊙O的切线;已知AD=3,CD=2,求BC的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.2、B【解题分析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【题目详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π,故选B.【题目点拨】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.3、B【解题分析】由内错角定义选B.4、A【解题分析】分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.详解:根据题意可得:5a=1,解得:a=,故选A.点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.5、C【解题分析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.故选C.点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.6、B【解题分析】【分析】分别求出每一个不等式的解集,然后在数轴上表示出每个不等式的解集,对比即可得.【题目详解】,解不等式①得,x>-3,解不等式②得,x≤2,在数轴上表示①、②的解集如图所示,故选B.【题目点拨】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7、C【解题分析】
根据扇形的面积公式列方程即可得到结论.【题目详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为πcm2,∴,∴α=150°,故选:C.【题目点拨】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积=.8、D【解题分析】
根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【题目详解】A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确.∴选D.9、C【解题分析】
利用折线统计图结合相应数据,分别分析得出符合题意的答案.【题目详解】A选项:年最高温度呈上升趋势,正确;
B选项:2014年出现了这6年的最高温度,正确;
C选项:年的温差成下降趋势,错误;
D选项:2016年的温差最大,正确;
故选C.【题目点拨】考查了折线统计图,利用折线统计图获取正确信息是解题关键.10、D【解题分析】
解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【题目详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【题目点拨】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.二、填空题(本大题共6个小题,每小题3分,共18分)11、-1【解题分析】
分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.12、1【解题分析】试题分析:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.考点:一元二次方程的解.13、(,2).【解题分析】
解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴点E坐标(,2).故答案为:(,2).【题目点拨】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.14、1【解题分析】
解:由于点C为反比例函数上的一点,则四边形AOBC的面积S=|k|=1.故答案为:1.15、2【解题分析】
过点E作EF⊥BC于F,根据已知条件得到△BEF是等腰直角三角形,求得BE=AB+AE=6,根据勾股定理得到BF=EF=3,求得DF=BF−BD=,根据勾股定理即可得到结论.【题目详解】解:过点E作EF⊥BC于F,∴∠BFE=90°,∵∠BAC=90°,AB=AC=4,∴∠B=∠C=45°,BC=4,∴△BEF是等腰直角三角形,∵BE=AB+AE=6,∴BF=EF=3,∵D是BC的中点,∴BD=2,∴DF=BF−BD,∴DE===2.故答案为2.【题目点拨】本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键.16、-6【解题分析】如图,作AC⊥x轴,BD⊥x轴,∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴,∵∠OAB=60°,∴,设A(x,),∴BD=OC=x,OD=AC=,∴B(x,-),把点B代入y=得,-=,解得k=-6,故答案为-6.三、解答题(共8题,共72分)17、(1)列表见解析;(2)这个游戏规则对双方不公平.【解题分析】
(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性.【题目详解】(1)列表如下:由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率;(2)这个游戏规则对双方不公平.理由如下:因为P(和为奇数),P(和为偶数),而,所以这个游戏规则对双方是不公平的.【题目点拨】本题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.18、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.【解题分析】
(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可【题目详解】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,证明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴.∵BD=CD,∴,即.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=•BC•AD=×3×2=42,S△DEF=S△ABC=×42=3.又∵•AD•BD=•AB•DH,∴.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=.∵S△DEF=·EF·DG=·EF·=3,∴EF=4.【题目点拨】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.19、线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【解题分析】试题分析:在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF的长,从而可求得EF的长,即可求得CD的长.试题解析:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE-AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.【题目点拨】本题考查了解直角三角形的应用,正确地添加辅助线构造直角三角形是解题的关键.20、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解题分析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.21、①结论一正确,理由见解析;②结论二正确,S四QEFP=S【解题分析】试题分析:(1)由已知条件易得△BEQ∽△DAQ,结合点Q是BD的三等分点可得BE:AD=BQ:DQ=1:2,再结合AD=BC即可得到BE:BC=1:2,从而可得点E是BC的中点,由此即可说明甲同学的结论①成立;(2)同(1)易证点F是CD的中点,由此可得EF∥BD,EF=BD,从而可得△CEF∽△CBD,则可得得到S△CEF=S△CBD=S平行四边形ABCD=S,结合S四边形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,结合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四边形QEFP=S△AEF-S△AQP=S,从而说明乙的结论②正确;试题解析:甲和乙的结论都成立,理由如下:(1)∵在平行四边形ABCD中,AD∥BC,∴△BEQ∽△DAQ,又∵点P、Q是线段BD的三等分点,∴BE:AD=BQ:DQ=1:2,∵AD=BC,∴BE:BC=1:2,∴点E是BC的中点,即结论①正确;(2)和(1)同理可得点F是CD的中点,∴EF∥BD,EF=BD,∴△CEF∽△CBD,∴S△CEF=S△CBD=S平行四边形ABCD=S,∵S四边形AECF=S△ACE+S△ACF=S平行四边形ABCD=S,∴S△AEF=S四边形AECF-S△CEF=S,∵EF∥BD,∴△AQP∽△AEF,又∵EF=BD,PQ=BD,∴QP:EF=2:3,∴S△AQP=S△AEF=,∴S四边形QEFP=S△AEF-S△AQP=S-=S,即结论②正确.综上所述,甲、乙两位同学的结论都正确.22、(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【解题分析】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.
(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,分别求出甲乙两种生产多少件产品.【题目详解】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南玉溪江川特巡警招队员笔试真题2024
- 2025年山东大学晶体材料研究院(晶体材料全国重点实验室)非事业编制人员招聘备考题库及完整答案详解一套
- 2025年都昌辅警招聘真题及答案
- 3dmax飞机建模课程设计
- 2025年固态电容十年产业化关键技术与电子设备稳定性报告
- 2025湖南株洲市炎陵县财政局、县审计局公开招聘专业人才4人笔试重点题库及答案解析
- 7天税务培训课程设计
- 安卓初学者课程设计
- 2025-2026 学年高二 历史 期中复习卷 试卷及答案
- 小学信息技术机器人课程教学策略对学生信息素养的影响研究教学研究课题报告
- 新媒体账号管理制度单位(3篇)
- 2025年甘肃省张掖市培黎职业学院招聘非事业编制工作人员14人(公共基础知识)测试题附答案解析
- 机关单位绩效考核系统建设方案
- 借用公司签合同协议
- 外耳道湿疹的护理
- 鼻炎中医讲课课件
- 孔隙率测定方法
- 2025 初中中国历史一二九运动的爆发课件
- 技术开发文档编写与归档规范
- 2025年国家开放大学《数据分析与统计》期末考试备考题库及答案解析
- 《算法设计与分析》期末考试试卷及答案
评论
0/150
提交评论