版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章第二节函数模型及其应用第一课时eq\o(\s\up7(),\s\do5(整体设计))教学分析函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要用不同的函数模型来描述.本节的教学目标是认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同,应用函数模型解决简单问题.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的.通过教学让学生认识到数学来自现实生活,数学在现实生活中是有用的.三维目标1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异.2.恰当运用函数的三种表示方法(解析式、表格、图象)并借助信息技术解决一些实际问题.3.让学生体会数学在实际问题中的应用价值,培养学生学习兴趣.重点难点教学重点:认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长的不同.教学难点:应用函数模型解决简单问题.课时安排2课时eq\o(\s\up7(),\s\do5(教学过程))第1课时导入新课思路1.(事例导入)一张纸的厚度大约为0.01cm,一块砖的厚度大约为10cm,请同学们计算将一张纸对折n次的厚度和n块砖的厚度,列出函数关系式,并计算n=解:纸对折n次的厚度:f(n)=0.01·2n(cm),n块砖的厚度:g(n)=10n(cm),f(20)≈105m,g(20)=也许同学们感到意外,通过对本节课的学习大家对这些问题会有更深的了解.思路2.(直接导入)请同学们回忆指数函数、对数函数以及幂函数的图象和性质,本节我们将通过实例比较它们的增长差异.推进新课eq\b\lc\\rc\(\a\vs4\al\co1(新知探究))eq\b\lc\\rc\(\a\vs4\al\co1(提出问题))①如果张红购买了每千克1元的蔬菜x千克,需要支付y元,把y表示为x的函数.②正方形的边长为x,面积为y,把y表示为x的函数.③某保护区有1单位面积的湿地,由于保护区的努力,使湿地面积每年以5%的增长率增长,经过x年后湿地的面积为y,把y表示为x的函数.④分别用表格、图象表示上述函数.,⑤指出它们属于哪种函数模型.⑥讨论它们的单调性.⑦比较它们的增长差异.⑧另外还有哪种函数模型与对数函数相关.活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.①总价等于单价与数量的积.②面积等于边长的平方.③由特殊到一般,先求出经过1年、2年…④列表画出函数图象.⑤引导学生回忆学过的函数模型.⑥结合函数表格与图象讨论它们的单调性.⑦让学生自己比较并体会.⑧其他与对数函数有关的函数模型.讨论结果:①y=x.②y=x2.③y=(1+5%)x.④如下表x123456Y=x123456Y=x2149162536y=(1+5%)x1.051.101.161.221.281.34它们的图象分别为图1,图2,图3.图1图2图3⑤它们分别属于:y=kx+b(直线型),y=ax2+bx+c(a≠0,抛物线型),y=kax+b(指数型).⑥从表格和图象得出它们都为增函数.⑦在不同区间增长速度不同,随着x的增大y=(1+5%)x的增长速度越来越快,会远远大于另外两个函数.⑧另外还有与对数函数有关的函数模型,形如y=logax+b,我们把它叫做对数型函数.eq\b\lc\\rc\(\a\vs4\al\co1(应用示例))例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:我们可以先建立三种投资方案所对应的函数模型,再通过比较它们的增长情况,为选择投资方案提供依据.解:设第x天所得回报是y元,则方案一可以用函数y=40(x∈N*)进行描述;方案二可以用函数y=10x(x∈N*)进行描述;方案三可以用函数y=0.4×2x-1(x∈N*)进行描述.三个模型中,第一个是常数函数,后两个都是递增函数模型.要对三个方案做出选择,就要对它的增长情况进行分析.我们先用计算机计算一下三种所得回报的增长情况.
x/天方案一方案二方案三y/元增加量/元y/元增加量/元y/元增加量/元140100.4240020100.80.4340030101.60.8440040103.21.6540050106.43.26400601012.86.47400701025.612.88400801051.225.694009010102.451.21040010010204.8102.4…3040030010214748364.8107374182.4再作出三个函数的图象(图4).图4由表和图4可知,方案一的函数是常数函数,方案二、方案三的函数都是增函数,但方案二与方案三的函数的增长情况很不相同.可以看到,尽管方案一、方案二在第1天所得回报分别是方案三的100倍和25倍,但它们的增长量固定不变,而方案三是“指数增长”,其“增长量”是成倍增加的,从第7天开始,方案三比其他两方案增长得快得多,这种增长速度是方案一、方案二无法企及的.从每天所得回报看,在第1~3天,方案一最多;在第4天,方案一和方案二一样多,方案三最少;在第5~8天,方案二最多;第9天开始,方案三比其他两个方案所得回报多得多,到第30天,所得回报已超过2亿元.下面再看累积的回报数.通过计算机或计算器列表如下:天数回报/元方案1234567891011一4080120160200240280320360400440二103060100150210280360450550660三0.41.22.8612.425.250.8102204.4409.2818.8因此,投资1~6天,应选择方案一;投资7天,应选择方案一或方案二;投资8~10天,应选择方案二;投资11天(含11天)以上,则应选择方案三.针对上例可以思考下面问题:①选择哪种方案是依据一天的回报数还是累积回报数.②课本把两种回报数都列表给出的意义何在?③由此得出怎样的结论.答案:①选择哪种方案依据的是累积回报数.②让我们体会每天回报数的增长变化.③上述例子只是一种假想情况,但从中我们可以体会到,不同的函数增长模型,其增长变化存在很大差异.
变式训练某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟付话费0.4元;“神州行”不缴月基础费,每通话1分钟付话费0.6元,若设一个月内通话x分钟,两种通讯业务的费用分别为y1元和y2元,那么(1)写出y1、y2与x之间的函数关系式;(2)在同一直角坐标系中画出两函数的图象;(3)求出一个月内通话多少分钟,两种通讯业务费用相同;(4)若某人预计一个月内使用话费200元,应选择哪种通讯业务较合算.思路分析:我们可以先建立两种通讯业务所对应的函数模型,再通过比较它们的变化情况,为选择哪种通讯提供依据.(1)全球通的费用应为两种费用的和,即月基础费和通话费,神州行的费用应为通话费用;(2)运用描点法画图,但应注意自变量的取值范围;(3)可利用方程组求解,也可以根据图象回答;(4)求出当函数值为200元时,哪个函数所对应的自变量的值较大.解:(1)y1=50+0.4x(x≥0),y2=0.6x(x≥0).(2)图象如图5所示.图5(3)根据图中两函数图象的交点所对应的横坐标为250,所以在一个月内通话250分钟时,两种通讯业务的收费相同.(4)当通话费为200元时,由图象可知,y1所对应的自变量的值大于y2所对应的自变量的值,即选取全球通更合算.另解:当y1=200时有0.4x+50=200,∴x1=375;当y2=200时有0.6x=200,x2=eq\f(1000,3).显然375>eq\f(1000,3),∴选用“全球通”更合算.点评:在解决实际问题过程中,函数图象能够发挥很好的作用,因此,我们应当注意提高读图的能力.另外,本例题用到了分段函数,分段函数是刻画现实问题的重要模型.例2某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随着利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y=0.25x,y=log7x+1,y=1.002x,其中哪个模型能符合公司的要求?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:某个奖励模型符合公司要求,就是依据这个模型进行奖励时,奖金总数不超过5万元,同时奖金不超过利润的25%,由于公司总的利润目标为1000万元,所以人员销售利润一般不会超过公司总的利润.于是只需在区间[10,1000]上,检验三个模型是否符合公司要求即可.不妨先作出函数图象,通过观察函数的图象,得到初步结论,再通过具体计算,确认结果.解:借助计算器或计算机作出函数y=0.25x,y=log7x+1,y=1.002x的图象(图6).图6观察函数的图象,在区间[10,1000]上,模型y=0.25x,y=1.002x的图象都有一部分在直线y=5的上方,只有模型y=log7x+1的图象始终在y=5的下方,这说明只有按模型y=log7x+1进行奖励时才符合公司的要求.下面通过计算确认上述判断.首先计算哪个模型的奖金总数不超过5万.对于模型y=0.25x,它在区间[10,1000]上递增,而且当x=20时,y=5,因此,当x>20时,y>5,所以该模型不符合要求;对于模型y=1.002x,由函数图象,并利用计算器,可知在区间(805,806)内有一个点x0满足1.002x0=5,由于它在区间[10,1000]上递增,因此当x>x0时,y>5,所以该模型也不符合要求;对于模型y=log7x+1,它在区间[10,1000]上递增,而且当x=1000时,y=log71000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y=log7x+1奖励时,奖金是否不超过利润的25%,即当x∈[10,1000]时,是否有eq\f(y,x)=eq\f(log7x+1,x)≤0.25成立.令f(x)=log7x+1-0.25x,x∈[10,1000].利用计算器或计算机作出函数f(x)的图象(图7),由函数图象可知它是递减的,因此图7f(x)<f(10)≈-0.3167<0,即log7x+1<0.25x.所以当x∈[10,1000]时,eq\f(log7x+1,x)<0.25.说明按模型y=log7x+1奖励,奖金不超过利润的25%.综上所述,模型y=log7x+1确实能符合公司的要求.变式训练市场营销人员对过去几年某商品的价格及销售数量的关系做数据分析发现有如下规律:该商品的价格每上涨x%(x>0),销售数量就减少kx%(其中k为正实数).目前,该商品定价为a元,统计其销售数量为b个.(1)当k=eq\f(1,2)时,该商品的价格上涨多少,就能使销售的总金额达到最大?(2)在适当的涨价过程中,求使销售总金额不断增加时k的取值范围.解:依题意,价格上涨x%后,销售总金额为y=a(1+x%)·b(1-kx%)=eq\f(ab,10000)[-kx2+100(1-k)x+10000].(1)取k=eq\f(1,2),y=eq\f(ab,10000)(-eq\f(1,2)x2+50x+10000),所以x=50,即商品价格上涨50%,y最大为eq\f(9,8)ab.(2)因为y=eq\f(ab,10000)[-kx2+100(1-k)x+10000],此二次函数的开口向下,对称轴为x=eq\f(501-k,k),在适当涨价过程后,销售总金额不断增加,即要求此函数当自变量x在{x|x>0}的一个子集内增大时,y也增大.所以eq\f(501-k,k)>0,解得0<k<1.点评:这类问题的关键在于列函数解析式建立函数模型,然后借助不等式进行讨论.eq\b\lc\\rc\(\a\vs4\al\co1(知能训练))光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k,通过x块玻璃以后强度为y.(1)写出y关于x的函数关系式;(2)通过多少块玻璃以后,光线强度减弱到原来的eq\f(1,3)以下.(lg3≈0.4771)解:(1)光线经过1块玻璃后强度为(1-10%)k=0.9k;光线经过2块玻璃后强度为(1-10%)·0.9k=0.92k;光线经过3块玻璃后强度为(1-10%)·0.92k=0.93k;光线经过x块玻璃后强度为0.9xk.∴y=0.9xk(x∈N*).(2)由题意:0.9xk<eq\f(k,3).∴0.9x<eq\f(1,3).两边取对数,xlg0.9<lgeq\f(1,3).∵lg0.9<0,∴x>eq\f(lg\f(1,3),lg0.9).∵eq\f(lg\f(1,3),lg0.9)=eq\f(lg3,1-2lg3)≈10.4,∴xmin=11.∴通过11块玻璃以后,光线强度减弱到原来的eq\f(1,3)以下.eq\b\lc\\rc\(\a\vs4\al\co1(拓展提升))某池塘中野生水葫芦的面积与时间的函数关系的图象(如图8所示).假设其关系为指数函数,并给出下列说法:①此指
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 试验委托协议书
- 工地合作合同范本
- 广告宣传协议书
- 工作框架协议书
- 诊所招人协议书
- 小学旷课协议书
- 幽默减肥协议书
- 延期质保协议书
- 装修赔款协议书
- 英语陪跑协议书
- 门窗合同范本的模板
- 深度解析(2026)《DLT 2121-2020高压直流输电换流阀冷却系统化学监督导则》
- 2025北京日报社招聘10人参考笔试题库及答案解析
- 2025-2026学年高一上学期期中模拟地理试卷 (上海专用)
- 财务税务合规审查操作手册
- 2023年开封辅警招聘考试真题含答案详解(完整版)
- 2025年注册监理工程师房建工程延续继续教育试卷及答案
- 散白酒知识培训资料课件
- 《宋崇导演教你拍摄微电影》章节测试题及答案
- 2025年弱电施工考试题目及答案
- 2025年初级社工考试真题及答案
评论
0/150
提交评论