




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省平坝县新启航教育2023-2024学年高一数学第一学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.随着智能手机的普及,手机摄影越来越得到人们的喜爱,要得到美观的照片,构图是很重要的,用“黄金分割构图法”可以让照片感觉更自然、更舒适,“黄金九宫格”是黄金分割构图的一种形式,是指把画面横、竖各分三部分,以比例为分隔,4个交叉点即为黄金分割点.如图,分别用表示黄金分割点.若照片长、宽比例为,设,则()A. B.C. D.2.已知函数是定义在R上的减函数,实数a,b,c满足,且,若是函数的一个零点,则下列结论中一定不正确的是()A. B.C. D.3.()A. B.3C.2 D.4.已知函数,下列结论正确的是()A.函数图像关于对称B.函数在上单调递增C.若,则D.函数的最小值为5.奇函数f(x)在(-∞,0)上单调递增,若f(-1)=0,则不等式f(x)<0的解集是.A.(-∞,-1)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(0,1) D.(-1,0)∪(1,+∞)6.已知集合,,则()A. B.C. D.7.已知函数的值域为R,则实数的取值范围是()A. B.C. D.8.已知是减函数,则a的取值范围是()A. B.C. D.9.已知全集,集合,集合,则为A. B.C. D.10.已知,则()A.- B.C.- D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知偶函数是区间上单调递增,则满足的取值集合是__________12.已知,则______________13.设函数fx=ex-1,x≥a-xx2-5x+6,x<a,则当时,14.若角的终边与以原点为圆心的单位圆交于点,则的值为___________.15.若,则_________.16.一个棱长为2cm的正方体的顶点都在球面上,则球的体积为_______cm³.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求最小正周期;(2)求的单调递增区间;(3)当时,求的最大值和最小值18.已知集合:①;②;③,集合(m为常数),从①②③这三个条件中任选一个作为集合A,求解下列问题:(1)定义,当时,求;(2)设命题p:,命题q:,若p是q成立的必要不充分条件,求实数m的取值范围19.已知二次函数满足,且求的解析式;设,若存在实数a、b使得,求a的取值范围;若对任意,都有恒成立,求实数t的取值范围20.(1)计算:lg25+lg2•lg50+lg22(2)已知=3,求的值21.已知函数(Ⅰ)求在区间上的单调递增区间;(Ⅱ)若,,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】依题意可得,即可得到,再利用二倍角公式及同角三角函数的基本关系将弦化切,再代入计算可得;【详解】解:依题意,所以,所以故选:B2、B【解析】根据函数的单调性可得,再分和两种情况讨论,结合零点的存在性定理即可得出结论.【详解】解:∵是定义在R上的减函数,,∴,∵,∴或,,,当时,,;当,,时,;∴是不可能的.故选:B3、D【解析】利用换底公式计算可得答案【详解】故选:D4、A【解析】本题首先可以去绝对值,将函数变成分段函数,然后根据函数解析式绘出函数图像,最后结合函数图像即可得出答案.【详解】由题意可得:,即可绘出函数图像,如下所示:故对称轴为,A正确;由图像易知,函数在上单调递增,上单调递减,B错误;要使,则,由图象可得或、或,故或或,C错误;当时,函数取最小值,最小值,D错误,故选:A【点睛】本题考查三角函数的相关性质,主要考查三角函数的对称轴、三角函数的单调性以及三角函数的最值,考查分段函数,考查数形结合思想,是难题.5、A【解析】考点:奇偶性与单调性的综合分析:根据题目条件,画出一个函数图象,再观察即得结果解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(-∞,-1)∪(0,1)故选A6、B【解析】解对数不等式求得集合,由此判断出正确选项.【详解】,所以,所以没有包含关系,所以ACD选项错误,B选项正确.故选:B7、C【解析】分段函数值域为R,在x=1左侧值域和右侧值域并集为R.【详解】当,∴当时,,∵的值域为R,∴当时,值域需包含,∴,解得,故选:C.8、D【解析】利用分段函数在上单调递减的特征直接列出不等式组求解即得.【详解】因函数是定义在上的减函数,则有,解得,所以的取值范围是.故选:D9、A【解析】,所以,选A.10、D【解析】根据诱导公式可得,结合二倍角的余弦公式即可直接得出结果.【详解】由题意得,,即,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为为偶函数,所以等价于,又是区间上单调递增,所以.解得.答案为:.点睛:本题属于对函数单调性应用的考查,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.12、100【解析】分析得出得解.【详解】∴故答案为:100【点睛】由函数解析式得到是定值是解题关键.13、①.②.【解析】当时得到,令,再利用定义法证明在上单调递减,从而得到,令,,根据指数函数的性质得到函数的单调性,即可求出的最小值,即可得到的最小值;分别求出与的零点,根据恰有两个零点,即可求出的取值范围;【详解】解:当时,令,,设且,则因为且,所以,,所以,所以,所以在上单调递减,所以,令,,函数在定义域上单调递增,所以,所以的最小值为;对于,令,即,解得,对于,令,即,解得或或,因为fx=ex-1,x≥a-xx2-5x+6,x<a恰有两个零点,则和一定为的零点,不为的零点,所以,即;故答案为:;;14、##【解析】直接根据三角函数定义求解即可.【详解】解:因为角的终边与以原点为圆心的单位圆交于点,所以根据三角函数单位圆的定义得故答案为:15、##【解析】依题意利用诱导公式及二倍角公式计算可得;【详解】解:因为,所以.故答案为:.16、【解析】因为一个正方体的顶点都在球面上,它的棱长为2,所以正方体的外接球的直径就是正方体的对角线的长度:2所以球的半径为:所求球的体积为=故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),(3)最大值为,最小值为【解析】(1)由周期公式直接可得;(2)利用正弦函数的单调区间解不等式可得;(3)先根据x的范围求出的范围,然后由正弦函数的性质可得.【小问1详解】的最小正周期【小问2详解】由,,得,.所以函数的单调递增区间为,【小问3详解】∵,∴当,即时,当,即时,.18、(1);(2)【解析】(1)求出集合的范围,取交集即可(2)求出集合的范围,根据p是q成立的必要不充分条件,得到,从而求出参数的取值范围【小问1详解】选①:,若,即时,即,解得,若,则,无解,所以的解集为,故,由,可得,即,解得,故,则选②:,解得,故,,,即,解得,故,则选③:,,解得,故,,,即,解得,故,则【小问2详解】由,即,解得,因为p是q成立的必要不充分条件,所以,所以或,解得,故m的取值范围为19、(1);(2)或;(3).【解析】利用待定系数法求出二次函数的解析式;求出函数的值域,再由题意得出关于a的不等式,求出解集即可;由题意知对任意,都有,讨论t的取值,解不等式求出满足条件的t的取值范围【详解】解:设,因为,所以;;;;;解得:;;函数,若存在实数a、b使得,则,即,,解得或,即a的取值范围是或;由题意知,若对任意,都有恒成立,即,故有,由,;当时,在上为增函数,,解得,所以;当,即时,在区间上是单调减函数,,解得,所以;当,即时,,若,则,解得;若,则,解得,所以,应取;综上所述,实数t的取值范围是【点睛】本题考查了不等式恒成立问题,也考查了分类讨论思想与转化思想,属于难题20、(1)2;(2)9.【解析】(1)利用对数的性质及运算法则直接求解(2)利用平方公式得,x+x﹣1=()2﹣2=7,x2+x﹣2=(x+x﹣1)2﹣2=49﹣2=47,代入求解【详解】(1)lg25+lg2•lg50+lg22=lg52+lg2(lg5+1)+lg22=2lg5+lg2•lg5+lg2+lg22=2lg5+lg2+lg2(lg5+lg2)=2(lg5+lg2)=2;(2)由,得,即x+2+x-1=9∴x+x-1=7两边再平方得:x2+2+x-2=49,∴x2+x-2=47∴=【点睛】本题考查了有理指数幂的运算,考查了对数式化简求值,属于基础题21、(Ⅰ),;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业培训现场课件内容
- 企业培训时间管理课件
- 婴幼儿托育相关知识考核试题及答案
- 英语八年级上第二次月考试卷
- 财务税务筹划财务担保合同范本
- 核心技术资料参观保密协议书模板
- 跨国餐饮品牌国内托管合作协议
- 智能家居草坪施工与智能家居系统整合合同
- 供应链金融企业应收账款融资借款合同范本
- 财务风险控制保密合同模板
- 酒店前厅客人接待标准试题及答案
- 装卸作业时接口连接可靠性确认制度
- 非法宗教知识讲座
- 红砖围墙施工方案
- 2025年云南省保山市隆阳区小升初模拟数学测试卷含解析
- 数字化赋能高校思政课建设的策略研究
- 黄柏种植可行性报告
- 2025年度地下综合管廊代建合同模板
- 工程全过程造价咨询管理及控制要点
- 2025年度药品区域代理销售合同范本3篇
- 输变电工程监督检查标准化清单-质监站检查
评论
0/150
提交评论