版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省东莞市第四高级中学2023-2024学年数学高一上期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.是边AB上的中点,记,,则向量A. B.C. D.2.已知函数,若关于的不等式恰有一个整数解,则实数的最小值是A. B.C. D.3.若,且则与的夹角为()A. B.C. D.4.幂函数的图象过点,则()A. B.C. D.5.圆与圆有()条公切线A.0 B.2C.3 D.46.过点作圆的两条切线,切点分别为,,则所在直线的方程为()A. B.C. D.7.两圆和的位置关系是A.相离 B.相交C.内切 D.外切8.设,,则()A. B.C. D.9.已知集合,,则()A. B.C. D.10.甲:“x是第一象限的角”,乙:“是增函数”,则甲是乙的()A充分但不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.经过两条直线和的交点,且垂直于直线的直线方程为__________12.命题“”的否定是__________13.函数是幂函数,且在上是减函数,则实数__________.14.已知函数的部分图象如图所示,则____________15.函数的单调增区间是__________16.幂函数为偶函数且在区间上单调递减,则________,________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下:(1)求甲在比赛中得分均值和方差;(2)从甲比赛得分在分以下场比赛中随机抽取场进行失误分析,求抽到场都不超过均值的概率18.已知函数(1)若的定义域为R,求a的取值范围;19.已知二次函数,且是函数的零点.(1)求解析式,并解不等式;(2)若,求函数的值域20.某种树木栽种时高度为A米为常数,记栽种x年后的高度为,经研究发现,近似地满足,其中,a,b为常数,,已知,栽种三年后该树木的高度为栽种时高度的3倍(Ⅰ)求a,b的值;(Ⅱ)求栽种多少年后,该树木的高度将不低于栽种时的5倍参考数据:,21.已知函数,(1)求证:为奇函数;(2)若恒成立,求实数的取值范围;(3)解关于的不等式
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意得,∴.选C2、A【解析】将看作整体,先求的取值范围,再根据不等式恰有一个整点和函数的图像,推断参数,的取值范围【详解】做出函数的图像如图实线部分所示,由,得,若,则满足不等式,不等式至少有两个整数解,不满足题意,故,所以,且整数解只能是4,当时,,所以,选择A【点睛】本题考查了分段函数的性质,一元二次不等式的解法,及整体代换思想,数形结合思想的应用,需要根据题设条件,将数学语言转化为图形表达,再转化为参数的取值范围3、C【解析】因为,设与的夹角为,,则,故选C考点:数量积表示两个向量的夹角4、C【解析】将点代入中,求解的值可得,再求即可.【详解】因为幂函数的图象过点,所以有:,即.所以,故,故选:C.5、B【解析】由题意可知圆的圆心为,半径为,圆的圆心为半径为∵两圆的圆心距∴∴两圆相交,则共有2条公切线故选B6、B【解析】先由圆方程得到圆心和半径,求出的长,以及的中点坐标,得到以为直径的圆的方程,由两圆方程作差整理,即可得出所在直线方程.【详解】因为圆的圆心为,半径为,所以,的中点为,则以为直径的圆的方程为,所以为两圆的公共弦,因此两圆的方法作差得所在直线方程为,即.故选:B.【点睛】本题主要考查求两圆公共弦所在直线方法,属于常考题型.7、B【解析】依题意,圆的圆坐标为,半径为,圆的标准方程为,其圆心坐标为,半径为,两圆心的距离,且两圆相交,故选B.8、D【解析】解出不等式,然后可得答案.【详解】因为,所以故选:D9、B【解析】化简集合A,由交集定义直接计算可得结果.【详解】化简可得,又所以.故选:B.10、D【解析】由正弦函数的单调性结合充分必要条件的定义判定得解【详解】由x是第一象限的角,不能得到是增函数;反之,由是增函数,x也不一定是第一象限角故甲是乙的既不充分又不必要条件故选D【点睛】本题考查充分必要条件的判定,考查正弦函数的单调性,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】联立方程组求得交点的坐标为,根据题意求得所求直线的斜率为,结合点斜式可得所求直线的方程.【详解】联立方程组,得交点,因为所求直线垂直于直线,故所求直线的斜率,由点斜式得所求直线方程为,即.故答案为:.12、【解析】特称命题的否定.【详解】命题“”的否定是【点睛】本题考查特称命题的否定,属于基础题;对于含有量词的命题的否定要注意两点:一是要改换量词,即把全称(特称)量词改为特称(全称)量词,二是注意要把命题进行否定.13、2【解析】根据函数为幂函数求参数m,讨论所求得的m判断函数是否在上是减函数,即可确定m值.【详解】由题设,,即,解得或,当时,,此时函数在上递增,不合题意;当时,,此时函数在上递减,符合题设.综上,.故答案为:214、①.②.【解析】分析:先根据四分之一周期求根据最高点求.详解:因为因为点睛:已知函数的图象求解析式(1).(2)由函数周期求(3)利用“五点法”中相对应的特殊点求.15、,【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的单调性解不等式,可得到函数的递增区间.详解:,,,由,计算得出,因此函数的单调递增区间为:,故答案为,.点睛:本题主要考查三角函数的单调性,属于中档题.函数的单调区间的求法:(1)代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2)图象法:画出三角函数图象,利用图象求函数的单调区间.16、(1).或3(2).4【解析】根据题意可得:【详解】区间上单调递减,,或3,当或3时,都有,,.故答案为:或3;4.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)15,32.25(2)【解析】(1)由已知中的茎叶图,代入平均数和方差公式,可得得答案;(2)根据古典概型计算即可求解.【详解】(1)这8场比赛队员甲得分为:7,8,10,15,17,19,21,23故平均数为:,方差:.(2)从甲比赛得分在分以下的场比赛中随机抽取场,共有15中种不同的取法,其中抽到场都不超过均值的为得分共6种,由古典概型概率公式得.18、(1)(2)【解析】(1)转化为,可得答案;(2)转化为时,利用基本不等式对求最值可得答案【小问1详解】由题意得恒成立,得,解得,故a的取值范围为【小问2详解】由,得,即,因为,所以,因为,所以,当且仅当,即时,等号成立故,a的取值范围为19、(1);;(2).【解析】(1)根据的零点求出,的值,得出函数的解析式,然后解二次不等式即可;(2)利用换元法,令,则,然后结合二次函数的图象及性质求出最值.【详解】(1)由题意得,解得所以当时,即,.(2)令,则,,当时,有最小值,当时,有最大值,故.【点睛】本题考查二次函数的解析式求解、值域问题以及一元二次不等式的解法,较简单.解答时只要抓住二次方程、二次函数、二次不等式之间的关系,则问题便可迎刃而解.20、(Ⅰ),;(Ⅱ)5年.【解析】Ⅰ由及联立解方程组可得;Ⅱ解不等式,利用对数知识可得【详解】Ⅰ,,
,又,即,,联立解得,,Ⅱ由Ⅰ得,由得,,故栽种5年后,该树木的高度将不低于栽种时的5倍【点睛】本题考查了函数解析式的求解及对数的运算,考查了函数的实际应用问题,属于中档题21、(1)证明见解析(2)(3)【解析】(1)求得的定义域,计算,与比较可得;(2)原不等式等价为对恒成立,运用基本不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 简单工装合同
- 第1课 走进思维世界 复习课件 2026年高考政治一轮复习 选择修必修三 逻辑与思维
- 充电桩用电合同
- 退休工人没签合同
- 个人房屋合同
- 石材验货合同
- 买玛莎拉蒂购车合同
- 枝江租房合同
- 泛美就业协议书
- 购房佣金协议书
- 画家经纪人合同
- 科普百科类绘本创作要点
- 人教版(2024)七年级数学上册期中检测数学试卷(含解析)
- 2025年全国2卷读后续写+课件-2026届高三英语上学期一轮复习专项
- 创新方法大赛理论知识考核试题题库及答案
- 2022室外排水设施设计与施工-钢筋混凝土化粪池22S702
- 住院患者静脉血栓栓塞症的预防护理(试题及答案)
- 如何提高静脉穿刺技术
- 2022年南京六合经济技术开发集团有限公司招聘笔试试题及答案解析
- 心脏听诊操作考核评分标准
- 企业安全生产责任落实情况检查表
评论
0/150
提交评论