




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年甘肃省庆阳市中考数学一模试卷
一、选择题(本大题共10小题,共30.0分。在每小题列出的选项中,选出符合题目的一项)
1.在实数一3.5,-2,0,2中,最小的数是()
A.-3.5B.-2C.0D.2
2.下列计算正确的是()
A.a2+a2=a4B.a3-a3=2a3C.a6a3=a3D.(—2a2)3=—6a6
3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是
()
A感B动中。国
4.己知低;限方程组倒的解,则a-b的值是()
IX—1十ay—1
A.-1B.2C.3D.4
5.下面命题正确的是()
A.矩形对角线互相垂直
B.方程/=14x的解为久=14
C.六边形内角和为540。
D.一对直角三角形,有一组斜边和直角边对应相等,则这两个直角三角形全等
6.如图,在AABC中,点。在边48上,BD=2AD,DE〃BC交AC于A
点E,若线段DE=4,则线段BC的长为()/\
A.7.5D/-——
B.10/\
「BC
C.12
D.15
7.把不等式组{:_4中每个不等式的解集在同一条数轴上表示出来,正确的为()
A
-36I>B.6ip
8.如图,在。。中,AB为弦,。。_1.48于点。,ABOD=53°,过点4作
O。的切线,交。。的延长线于点C,则4c=()
A.27°
B.37°
C.43°
D.53°
9.如图,这是一农村民居侧面截图,屋坡AF,AG分别架在
墙体的点B,C处,且4B=4C,侧面四边形8DEC为矩形.若测
得NFBD=55°,则乙4=()
A.70°
B.110°
C.125°
D.135°
10.如图,正方形4BCO的边长为2cm,动点P,Q同时从点4出发,在
正方形的边上,分别按力t。-C,的方向,都以lcm/s的速
度运动,到达点C运动终止,连接PQ,设运动时间为xs,A4PQ的面积
为yea?,则下列图象中能大致表示y与》的函数关系的是()
二、填空题(本大题共8小题,共24.0分)
H.计算/7=型的结果是
12.分解因式:b3-b=.
13.如图,将一块三角板的直角顶点放在直尺的一边上,当/2=
40°时,41=°,
14.某公司10名职工的3月份工资统计如下,该公司10名职工3月份工资的中位数是
兀.
工资/元5000520054005600
人数/人1342
15.关于x的一元二次方程/+x+k=0有两个实数根,贝必的取值范围是.
2
16.已知点(—2/1),(-l,y2),(1,g)都在反比例函数丫=一季(仅为常数,且6*0)的图象
上,则%,丫2,丫3的大小关系是
17.如图是某风景区的一个圆拱形门,路面宽为2m,净高CD为5m,
则圆拱形门所在圆的半径为m.
18.如图,在菱形48CD中,对角线AC、BD相交于点0,BD=8,
^ABD=?则线段口的长为——•
三、计算题(本大题共1小题,共4.0分)
19.解方程:x(2x-5)=2x-5.
四、解答题(本大题共9小题,共62.0分。解答应写出文字说明,证明过程或演算步骤)
20.(本小题4.0分)
化简:融X—言)•
21.(本小题6.0分)
如图,在AABC中,AB=AC.
(1)尺规作图:在BC边上求一点P,使得PA=PC.(保留作图痕迹,不写作法)
(2)求证:△ABCSAPAC.
22.(本小题6.0分)
如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在其南偏西22。方向
上,航行2小时后到达N处,观测到灯塔P在其南偏西44。方向上,若该船继续向南航行至离灯
塔最近的位置,求此时轮船离灯塔的距离(由科学计算器得到sin68。B0.9272,sin460=
0.7193,sin44°«0.6947,sin22°b0.3746).
23.(本小题6.0分)
为落实国家“双减”政策,某学校在课后服务活动中开设了4书法、B剪纸、C足球、。乒乓
球这四门课程供学生选择,每门课程被选到的机会均等.
(1)小军选择的课程是篮球这一事件是;
4随机事件
B.必然事件
C.不可能事件
(2)若小军和小贤两位同学各计划选修自己喜欢的一门课程,请用列表法或画树状图法求他们
两人恰好同时选修球类课程的概率.
24.(本小题7.0分)
为了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘
制出了如下两个尚不完整的统计图表.
调查结果统计表:
组别分组(单位:元)人数
A0<%<304
B30<x<6016
C60<%<90a
D90<%<120b
E%>1202
调查结果扇形统计图
请根据以上图表,解答下列问题:
(1)这次被调查的同学共有人,a+b=,m%=%;
(2)求扇形统计图中扇形C的圆心角的度数;
(3)若该校共有学生1000人,请估计每月零花钱的数额x在30<x<90范围的人数.
25.(本小题7.0分)
如图,一次函数的图象y=kx+b与反比例函数y=7的图象在第一象限交于点力(4,3),与y轴
的负半轴交于点B,且。4=08.
(1)求一次函数y=k%+b与反比例函数y=?的表达式;
(2)请直接写出不等式0<依+b<(的解集.
26.(本小题8.0分)
如图,在AABC中,AB=4C.以AB为直径的。。分别与BC、AC相交于点。、E,连接AD.过
点。作DFJ.4C,垂足为点F,
(1)求证:DF是。。的切线;
(2)若。。的半径为4,^CDF=22.5°,求图中阴影部分的面积.
27.(本小题8.0分)
如图,在J4BCD中,乙4cB=45。,AE1BC于点E,过点C作CF14B于点F,交4E于点M,
点N在边BC上,且4M=CN,连接。N,延长40到点G,使OG=NC,连接CG.
(1)求证:AB=CM,
(2)试判断AZCG的形状,并说明理由.
(3)若4。=3V2.AM=C,则DN=
28.(本小题10.0分)
如图,过点/(5,%的抛物线y=ax2+版的对称轴是直线x=2,点B是抛物线与x轴的一个
交点,点C在y轴上,点。是抛物线的顶点,设点P在直线。4下方且在抛物线y=&/+八上,
过点P作y轴的平行线交。4于点Q.
缶用图
(1)求a、b的值;
(2)求PQ的最大值;
(3)当△BCD是直角三角形时,求AOBC的面积.
答案和解析
1.【答案】A
【解析】解:•••|-3.5|>|-2|,
:*—3.5<—2,
—3.5<—2<0V2,
最小的数是-3.5,
故选:A.
根据有理数比较大小的方法即可求解.
本题主要考查有理数比较大小,掌握负数小于零,零小于正数,正数大于负数,两个负数比较大
小,绝对值大的反而小是解题的关键.
2.【答案】C
【解析】解:力、•••a2+cl2=2a2,a2+a2=a4错误,不符合题意;
B、•:a3-a3=a3+3=a6,a3-a3=2a3错误,不符合题意;
C、ra,+a3=CJ6-3=+a,=a3正确,符合题意;
。、;(—2CJ2)3=—8a6,(—2a2)3=—6a6错误,不符合题意.
故选:C.
根据同底数嘉的乘法法则,同底数嘉的除法法则,整式的加减运算法则,积的乘方的运算法则对
每项判断即可得到正确选项.
本题考查了同底数基的乘法法则,同底数幕的除法法则,整式的加减运算法则,积的乘方的运算
法则,掌握同底数累的乘运算法则和同底数嘉的除法运算法则是解题的关键.
3.【答案】C
【解析】此题主要考查了轴对称图形的性质,正确掌握相关定义是解题关键.
直接利用轴对称图形的性质分析得出答案.
解:4、不是轴对称图形,不合题意;
B、不是轴对称图形,不合题意;
C、是轴对称图形,符合题意;
。、不是轴对称图形,不合题意.
故选:C.
4.【答案】D
【解析】
【分析】
本题考查了二元一次方程的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组
的解.解题的关键是要知道两个方程组之间解的关系.先将代入方程组,得到关于a,b的
方程组,两方程相减即可得出答案.
【解答】
解:•噂:假方程组像詈::的解,
(2a+b=5
'(2b+a=1'
两个方程相减,得a-b=4.
5.【答案】D
【解析】解:4选项,矩形的对角线相互平分,不是相互垂直,故A选项错误,不符合题意;
B选项,方程/=14x的解为X]=0,x2=14,故B选项错误,不符合题意;
C选项,六边形内角和为180。*(6-2)=720。,故C选项错误,不符合题意;
D选项,直角三角形全等的判定方法是“斜边直角边”,故。选项正确,符合题意;
故选:D.
根据矩形的性质,配方法解一元二次方程的方法,多边形内角和定理,直角三角形全等的判定即
可求解.
本题主要考查相关知识的综合,掌握矩形的性质,配方法解一元二次方程的方法,多边形内角和
定理,直角三角形全等的判定是解题的关键.
6.【答案】C
【解析】解:••DE//BC,
ADE^^ABC»
AD_DE
ABBC
VBD=24。,
AD1
/.——=—,
AB3
vDE=4,
.4_1
BC3
BC=12.
故选:C.
由OE〃BC,可证得△AOEsAABC,然后由相似三角形的对应边成比例求得答案.
此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.
7.【答案】B
【解析】解:七点匕1_4
解不等式①得:x>2,
解不等式②得:x<-l,
将两不等式解集表示在数轴上如下:
o1F
故选:B.
先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.
本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原
则:同大取大,同小取小,大小小大取中间,大大小小无解了.
8.【答案】B
【解析】解:连接04
vODLAB^-D,0A=OB,
4AOC=4BOD=53°,
•••4C是O。的切线,
•••Z.OAC=90°,
•••“=90°-53°=37°,
故选:B.
连接。4根据等腰三角形的性质得到乙40C=NB。。=53。,由切线的性质得到N04C=90。,于
是得到结论.
本题考查了切线的性质,等腰三角形的性质,正确的作出辅助线构造直角三角形是解题的关键.
9.【答案】B
【解析】解:,•,四边形BDEC为矩形,
•••4CBD=90°,
•••^ABC=180°-乙FBD-乙CBD=180°-55°-90°=35°,
■■■AB=AC,
/.ABC=乙4cB=35°,
44=180°-2乙ABC=180°-3x35°=110°.
故选:B.
先根据平角的定义求出乙4BC的度数,再用三角形内角和定理可求得.
本题考查了矩形的性质,掌握这些定理和性质是解题的关键.
10.【答案】A
【解析】
【分析】
根据题意结合图形,分情况讨论:①0WXW2时,根据SMPQ=:4Q-4P,列出函数关系式,从
而得到函数图象;(2)2<x<4时,根据SMPQ=S正方掰BCD-SACP,Q,-SMBQ,-SAAPR列出函数
关系式,从而得到函数图象,再结合四个选项即可得解.
本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.
【解答】
解:①当0WxW2时,
•.•正方形的边长为2cm,
y=S&APQ=;AQ-AP=ix2;
②当2Wx44时,
y-SMPQ
=S正方形ABCD-S^CPfQ,~SRABQI-S&AP,D,
111
=2x2—(4—%)之一x2x(x-2)——x2x(%—2)
1
=-2%2?+2%
所以,y与久之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A选项图象符合.
故选:A.
11.【答案】2
【解析】解:法一、可
=|-2|
=2;
法二、
=y/~4y/~i
=2.
故答案为:2.
利用二次根式的性质计算即可.
本题考查了二次根式的性质,掌握“K=|a|"是解决本题的关犍.
12.【答案】b(b-1)(6+1)
【解析】解:b3-b
=b(b2-1)
=b(b-l)(b+l),
故答案为:b(b-l)(b+l).
先提取公因式,再用公式法因式分解即可.
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.
13.【答案】50
【解析】解:由题意可得,
直尺的上下两边平行,
故42=43,
•••42=40°,
43=40°,
V43+41=90°,
Azl=50°,
故答案为:50.
根据平行线的性质和直角三角形的性质,可以得到41的度数,本题得以解决.
本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.
14.【答案】5400
【解析】解:这组数据按照从小到大的顺序排列为:5000,5200,5200,5200,5400,5400,
5400,5400,5600,5600,
则中位数为:540°^5400=5400.
故答案为:5400.
根据中位数的概念求解.
本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数
是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个
数据的平均数就是这组数据的中位数.
15.【答案】k<l
【解析】解:Tani,b=1,c=kf
而方程有两个实数根
.•・△=b2-4ac=1-4/c>0,
・•.k.
由于已知方程有两个实数根,根据一元二次方程的根与判别式的关系,建立关于k的不等式,解不
等式可以求出k的取值范围.
总结一元二次方程根的情况与判别式△的关系:
(1)△>00方程有两个不相等的实数根;
(2)△=0=方程有两个相等的实数根;
(3)△<0=方程没有实数根.
16.【答案】y3<yi<yz
【解析】解:・••比例函数y=-号(巾为常数,且mRO)中,k=-m2<0,
•••图象在第二、四象限,
当x<0时,图象在第二象限,函数值大于零,函数值随自变量的增大而增大,
・•・在点(一2,%),(-1,%)中,0<%<丫2,
当先>0时,图象在第四象限,函数值小于零,函数值随自变量的增大而增大,
22
・•・在点(-1,丫2),(1/3)中,y2=rn>0,y3=-m<0,
综上所述,y3<0<y.t<y2,
•・・、3<7i〈为,
故答案为:为V丫1<加.
2
根据比例函数y=-号(m为常数,且niKO)中,k=-m2<0,图象在第二、四象限,根据图象
所在象限的特点即可求解.
本题主要考查反比例函数图象,掌握反比例函数图象的位置,增减性是解题的关键.
17.【答案】2.6
【解析】解:连接。4
Rt^OAD^,4D=;4B=1米;
设。0的半径为R,则04=0C=R,0D=5—R;
由勾股定理,得:。42=4。2+。。2,即:
R2=(5-R)2+#,解得R=2.6(米):
故答案为:2.6.
连接04由垂径定理易得出4。的长度,在RtAOAD中,可用半径表示出。。的长,根据勾股定理
即可求出半径的长度.
此题主要考查的是垂径定理及勾股定理的应用.解决与弦有关的问题时,往往需构造以半径、弦
心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则
有等式N=d2+(/成立,知道这三个量中的任意两个,就可以求出另外一个.
18.【答案】5
【解析】解:・.•四边形4BC。为菱形,BD=8,
BO=0D=QD=4,AC1BDf
・•・乙AOB=90°,
vtanZ-ABD="=g,
OB4
.・.OA=^3OB=3,
4
在RtzMBC中,AO=3,OB=4,
•••AB=VOA2+OB2=732+42=5,
故答案为:5.
3
然
。=
由菱形的性质得BO=OD==4,AC1BO,再由锐角三角函数定义求出。44-3,
后由勾股定理求出的长即可.
本题考查了菱形的性质,锐角三角函数定义,勾股定理等知识,熟练掌握菱形的性质和勾股定理
是解题的关键.
19.【答案】解:vx(2x-5)-(2x-5)=0,
(2x-5)(x-1)=0,
5=o或X1=o
2X
5
=
=2-
【解析】先移项得到x(2x-5)-(2x-5)=0,再利用因式分解法解方程.
本题考查了解一元二次方程-因式分解法.因式分解法就是利用因式分解求出方程的解的方法,
这种方法简便易用,是解一元二次方程最常用的方法.
20.【答案】解:原式=宜且+至土2
x+lX+1
_(X-2)2X+1
—x+1'x^2
=x—2.
【解析】根据分式的混合运算进行化简即可.
本题考查了分式的化简,掌握分式的运算顺序和约分是关键.
21.【答案】(1)解:如图.点P为所求作的点,
(2)证明:•••4B=47,
・•・乙B=乙C,
•・・PA=PC,
:.Z-C=Z.PAC,
:.Z-PAC=Z-B.
又1Z-C=Z.C,
・•・△PAC^hABC.
【解析】(1)作线段4c的垂直平分线交边BC即可;
(2)先证NB=NC,4c=Z.PAC,得乙PAC=乙B,利用两角分别相等的两个三角形全等即可得证.
本题考查了尺规作线段的垂直平分线以及相似三角形的判定,熟练掌握相似三角形的判定是解题
的关键.
22.【答案】解:如图,过点P作_LM/V于点4即该船继续向南航行至离灯塔最近的位置为点4
处,MN=30x2=60(海里),
•••APMA=22°,4PNA=44°,Z.PNA=Z.PMA+乙MPN,
4MPN=Z.PNA-^PMA=440-22°=22°,
•••乙PMN=乙MPN,
••.AMPN是等腰三角形,即MN=PN=60海里,
•••APNA=44°,
PA=PNsiMPNA®60X0.6947«41.682(海里).
答:此时轮船离灯塔的距离41.682海里.
【解析】如图所示,过点P作PA1MN于点4即该船继续向南航行至离灯塔最近的位置为点4处,
根据题意可算出MN的距离,△MPN是等腰三角形,在Rt△4PN中根据三角函数的计算即可求解.
本题主要考查三角函数的应用,掌握方位角的知识,三角函数的计算方法是解题的关键.
23.【答案】C
【解析】解:(1)、•学校在课后服务活动中没有开设篮球这门课程,
...小军选择的课程是篮球这一事件是不可能事件,
故选:C;
(2)画树状图如下:
ABCDABCDABCDABCD
共有16种等可能的结果,其中小军和小贤两位同学恰好同时选修球类课程的结果有4种,
二小军和小贤两人恰好同时选修球类课程的概率是2=1
1O4
(1)由不可能事件的概念即可得出结论;
(2)画树状图,共有16种等可能的结果数,其中小军和小贤两位同学恰好同时选修球类的有4种,
再由概率公式求解即可.
本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步
或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
24.【答案】解:(1)50;28;8;
(2)。组的人数有50x16%=8人,
则C组的人数有28-8=20人,
扇形统计图中扇形C的圆心角度数是360。x*=144°;
(3)每月零花钱的数额x在30<%<90范围的人数是1000x嗤^=720(人).
【解析】
【分析】
本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反
映部分占总体的百分比大小.
(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,用总人数减去4、B、E组
的人数,求出a+b的值,用A组的人数除以总人数求出m的值;
(2)用360。乘以C组所占的百分比即可得出答案;
(3)利用总人数1000乘以数额x在30<%<90范围的人数所占的百分比,即可得出答案.
【解答】
(1)调查的总人数是16+32%=50(人),
则a+b=50-4-16-2=28(人),
4
m%=—X100%=8%,
则m=8,
故答案为:50;28;8;
(2)见答案;
(3)见答案
25.【答案】解:(1);点力(4,3)在反比例函数y=;的图象上,J、
...k=4x3=12,
.,•反比例函数解析式为y=-x
22
•••OA=V4+3=5>。4=。8,点8在y轴负半轴上,BV
.♦,点8(0,-5)./I
把点4(4,3)、8(0,-5)代入丁=心;+6中,
得上丁,
解得:普=2
・•・一次函数的解析式为y=2%-5;
(2)令y=2x-5中y=0,则x=|,
・•.D(|,0),
由图象可知,不等式0</^+匕<三的解集为2.5<》<4.
【解析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出a值,从而得出反比例函数
解析式;由勾股定理得出04的长度从而得出点B的坐标,由点4、8的坐标利用待定系数法即可求
出直线48的解析式;
(2)观察第一象限双曲线在直线下方的部分自变量的范围即可.
本题是反比例函数与一次函数的交点问题,考查了反比例函数图象上点的坐标特征、待定系数法
求函数解析式、函数与不等式的关系,数形结合是解题的关键.
26.【答案】⑴证明:连接4D.
•••AB是。。的直径,
乙4DB=90°,
•••AD1BC.
又4B=AC=13,BC=10,。是BC的中点,
•••BD——5.
连接。。;
由中位线定理,知DO〃4C,
又OFJ.4C,
•••DF1。。.
DF是。。的切线;
(2)连接OE,
■:DFLAC,“OF=22.5。,
/.ABC=/LACB=67.5°,
/.BAC=45°,
OA=OE,
:.AAOE=90°,
•••O。的半径为4,
扇形
"SAOE=4%ShA0E=8
S阴影=S扇形AOE-S^AOE=47r—8
【解析】(1)连接4。、0Df则AD1BC,D为BC中点.。。为中位线,则。。〃4。,根据。F14C可
得0D1DF.得证;
(2)连接。E,利用(1)的结论得乙4BC=乙4cB=67.5。,易得乙B/C=45。,得出乙40E=90。,利
用扇形的面积公式和三角形的面积公式得出结论.
本题考查切线的判定、等腰三角形的判定和性质、扇形的面积公式等知识,解题的关键是学会添
加常用辅助线,灵活运用所学知识解决问题,学会用分割法求阴影部分面积,属于中考常考题型.
27.【答案】4
【解析】(1)证明:・・・AE于点E,于点用
・•・/-AEB=4CEM=乙CFB=90°,
:.Z-BAE=乙MCE=90°-乙B,
•・・Z,AEC=90°,乙ACB=45°,
・•・Z.EAC=4ECA=45°,
・•・AE—CE,
在和ACME中,
Z.AEB=匕CEM
AE=CE,
Z.BAE=乙MCE
.AABE=ACME(ASA)f
•.AB=CM.
(2)Zi4CG是等腰直角三角形,理由如下:
•・•四边形ABCD是平行四边形,
/.AB=CD,AD//BC,乙B=cADC,
・•・乙MCD=乙CFB=90°,
•・•△ABE三2CME,
:・AB=CM,48=ZCME,
・•・CM=CD,Z.CME=Z.ADCf
v2LAMC+Z-CME=180°,乙GDC+/-ADC=180°,
・・・Z,AMC=乙GDC,
vAM=CN,GD=CN,
,AM=GD,
在△4CM和△GCD中,
AM=GD
Z.AMC=乙GDC,
CM=CD
•••△ACMZAGCD(S4S),
••,AC=GC,乙ACM=^GCD,
・•・Z.ACG=LACD+乙GCD=Z.ACD+乙ACM=乙MCD=90°,
・・・△/CG是等腰直角三角形.
⑶解:•・•=3V-2»AM=GD=y/~~2f
・•・AG=AD-VGD=3。+。=4。,
-AC=GC,Z.ACG=90°,
・・・AC2+GC2=2GC2=AG2=(4/7)2,
•••GC=4,
vDG=NC,DG//NC,
•••四边形CGDN是平行四边形,
DN=GC=4,
故答案为:4.
(1)由4E18C于点E,CF14B于点凡^/.AEB=/.CEM=Z.CFB=90°,则NB4E=/MCE=
90°-/.B,由4E4C=^ECA=45°,得4E=CE,即要根据全等三角形的判定定理“4S4”证明
△ABE七4CME,得AB=CM;
(2)由平行四边形的性质得AB=CD,AD]IBC,zB=乙4OC,由^ABE^LCME,得力B=CM,
LB=Z.CME,则CM=CO,4CME=4ADC,所以44MC=NGOC,而4M=G。=CN,即可证
明AACM三△GCD,得4C=GC,/ACM=/.GCD,则乙4CG=NMCD=90。,所以AACG是等腰直
角三角形;
(3)由4O=3C,AM=GD=ATI.得4G=4。+GO=4「,由勾股定理得AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国登记柜台行业产业运行态势及投资规划深度研究报告
- 2025至2030中国电子门锁行业深度研究及发展前景投资评估分析
- 2025至2030中国瑜珈裤行业产业运行态势及投资规划深度研究报告
- 非遗研学旅游的可持续发展与生态保护路径研究
- 教育机器人引领未来学习新体验
- 游戏化学习在教育科技领域的应用与前景
- 商业环境中教育心理学的价值体现
- 教育技术中个人信息保护的国际比较研究
- 护理人员紧急替代培训
- 儿童教育中的学习动机培养方法论
- 广州市艺术中学招聘教师考试真题2024
- 工业自动化设备保修及维修管理措施
- 期末作文预测外研版七年级英语下册
- 2025-2030中国儿童鱼油行业销售动态及竞争策略分析报告
- GB/T 4153-2008混合稀土金属
- 《一粒种子》课件
- 弘扬钱学森精神PPT忠诚担当践行科学报国之志PPT课件(带内容)
- 上半年我国经济形势分析与公司应对策略
- 小学语文人教五年级下册(统编)第六单元-15、自相矛盾学历案
- 中国教育学会会员申请表
- 黄大年式教师团队申报
评论
0/150
提交评论