辽宁省清原中学2023-2024学年高一数学第一学期期末考试模拟试题含解析_第1页
辽宁省清原中学2023-2024学年高一数学第一学期期末考试模拟试题含解析_第2页
辽宁省清原中学2023-2024学年高一数学第一学期期末考试模拟试题含解析_第3页
辽宁省清原中学2023-2024学年高一数学第一学期期末考试模拟试题含解析_第4页
辽宁省清原中学2023-2024学年高一数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省清原中学2023-2024学年高一数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.直线与圆相交于两点,若,则的取值范围是A. B.C. D.2.若是三角形的一个内角,且,则的值是()A. B.C.或 D.不存在3.函数的单调递增区间为()A., B.,C., D.,4.土地沙漠化的治理,对中国乃至世界来说都是一个难题,我国创造了治沙成功案例——毛乌素沙漠.某沙漠经过一段时间的治理,已有1000公顷植被,假设每年植被面积以20%的增长率呈指数增长,按这种规律发展下去,则植被面积达到4000公顷至少需要经过的年数为()(参考数据:取)A.6 B.7C.8 D.95.设函数,若,则A. B.C. D.6.函数的部分图象大致是()A. B.C. D.7.若一个三角形采用斜二测画法作直观图,则其直观图的面积是原来三角形面积的()倍.A B.C. D.28.已知平行四边形的对角线相交于点点在的内部(不含边界).若则实数对可以是A. B.C. D.9.已知,,,则()A. B.C. D.10.若,则是()A.第一象限或第三象限角 B.第二象限或第四象限角C.第三象限或第四象限角 D.第二象限或第三象限角二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知角的终边过点,则___________.12.若函数满足:对任意实数,有且,当[0,1]时,,则[2017,2018]时,______________________________13.若在幂函数的图象上,则______14.已知定义在上的奇函数满足,且当时,,则__________.15.已知函数,若、、、、满足,则的取值范围为______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.(1)已知,,求;(2)已知,,求、的值;(3)已知,,且,求的值.17.对于定义在上的函数,如果存在实数,使得,那么称是函数的一个不动点.已知(1)当时,求的不动点;(2)若函数有两个不动点,,且①求实数的取值范围;②设,求证在上至少有两个不动点18.已知函数=的部分图象如图所示(1)求的值;(2)求的单调增区间;(3)求在区间上的最大值和最小值19.已知在半径为的圆中,弦的长为.(1)求弦所对的圆心角的大小;(2)求圆心角所在的扇形弧长及弧所在的弓形的面积.20.已知函数(1)求的单调区间及最大值(2)设函数,若不等式在上恒成立,求实数的取值范围21.定义在上奇函数,已知当时,求实数a的值;求在上的解析式;若存在时,使不等式成立,求实数m的取值范围

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】圆,即.直线与圆相交于两点,若,设圆心到直线距离.则,解得.即,解得故选C.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小2、B【解析】由诱导公式化为,平方求出,结合已知进一步判断角范围,判断符号,求出,然后开方,进而求出的值,与联立,求出,即可求解.【详解】,平方得,,是三角形的一个内角,,,,.故选:B【点睛】本题考查诱导公式化简,考查同角间的三角函数关系求值,要注意,三者关系,知一求三,属于中档题.3、C【解析】利用正切函数的性质求解.【详解】解:令,解得,所以函数的单调递增区间为,,故选:C4、C【解析】根据题意列出不等式,利用对数换底公式,计算出结果.【详解】经过年后,植被面积为公顷,由,得.因为,所以,又因为,故植被面积达到4000公顷至少需要经过的年数为8.故选:C5、A【解析】由的函数性质,及对四个选项进行判断【详解】因为,所以函数为偶函数,且在区间上单调递增,在区间上单调递减,又因为,所以,即,故选择A【点睛】本题考查幂函数的单调性和奇偶性,要求熟记几种类型的幂函数性质6、A【解析】分析函数的奇偶性及其在上的函数值符号,结合排除法可得出合适的选项.【详解】函数的定义域为,,函数为偶函数,排除BD选项,当时,,则,排除C选项.故选:A.7、A【解析】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可【详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三角形的高变为原来的,故直观图中三角形面积是原三角形面积的.故选:A.【点睛】本题考查平面图形的直观图,由斜二测画法看三角形底边长和高的变化即可,属于基础题.8、B【解析】分析:根据x,y值确定P点位置,逐一验证.详解:因为,所以P在线段BD上,不合题意,舍去;因为,所以P在线段OD外侧,符合题意,因为,所以P在线段OB内侧,不合题意,舍去;因为,所以P在线段OD内侧,不合题意,舍去;选B.点睛:若,则三点共线,利用这个充要关系可确定点的位置.9、A【解析】比较a、b、c与中间值0和1的大小即可﹒【详解】,,,∴﹒故选:A﹒10、D【解析】由已知可得即可判断.【详解】,即,则且,是第二象限或第三象限角.故选:D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据角终边所过的点,求得三角函数,即可求解.【详解】因为角的终边过点则所以故答案为:【点睛】本题考查了已知终边所过的点,求三角函数的方法,属于基础题.12、【解析】由题意可得:,则,据此有,即函数的周期为,设,则,据此可得:,若,则,此时.13、27【解析】由在幂函数的图象上,利用待定系数法求出幂函数的解析式,再计算的值【详解】设幂函数,,因为函数图象过点,则,,幂函数,,故答案为27【点睛】本题主要考查了幂函数的定义与解析式,意在考查对基础知识的掌握情况,是基础题14、##【解析】先求得是周期为的周期函数,然后结合周期性、奇偶性求得.【详解】因为函数为上的奇函数,所以,故,函数是周期为4的周期函数.当时,,则.故答案为:15、【解析】设,作出函数的图象,可得,利用对称性可得,由可求得,进而可得出,利用二次函数的基本性质可求得的取值范围.【详解】作出函数的图象如下图所示:设,当时,,由图象可知,当时,直线与函数的图象有五个交点,且点、关于直线对称,可得,同理可得,由,可求得,所以,.因此,的取值范围是.故答案为:.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2),;(3).【解析】(1)利用两角差的正切公式即可求解;(2)利用二倍角公式即可求解;(3)利用和差角公式即可求解.【详解】(1)因为,,所以,即.(2)因为,可得,所以,,因此,,.(3)由,则,,得.因为,所以.由,则,,得,由以及,得.因为,又,所以.17、(1)的不动点为和;(2)①,②证明见解析.【解析】(1)当时,函数,令,即可求解;(2)①由题意,得到的两个实数根为,,设,根据二次函数的图象与性质,列出不等式即可求解;②把可化为,设的两个实数根为,,根据是方程的实数根,得出,结合函数单调性,即可求解.【详解】(1)当时,函数,方程可化为,解得或,所以的不动点为和(2)①因为函数有两个不动点,,所以方程,即的两个实数根为,,记,则的零点为和,因为,所以,即,解得.所以实数的取值范围为②因为方程可化为,即因为,,所以有两个不相等的实数根设的两个实数根为,,不妨设因为函数图象的对称轴为直线,且,,,所以记,因为,且,所以是方程的实数根,所以1是的一个不动点,,因为,所以,,且的图象在上的图象是不间断曲线,所以,使得,又因为在上单调递增,所以,所以是的一个不动点,综上,在上至少有两个不动点【点睛】利用函数的图象求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.18、(1);(2)单调递增区间为(3)时,取得最大值1;时,f(x)取得最小值【解析】(1)利用图象的最高点和最低点的纵坐标确定振幅,由相邻对称轴间的距离确定函数的周期和值;(2)利用正弦函数的单调性和整体思想进行求解;(3)利用三角函数的单调性和最值进行求解试题解析:(1)由图象知由图象得函数最小正周期为=,则由=得(2)令..所以f(x)的单调递增区间为(3)..当即时,取得最大值1;当即时,f(x)取得最小值19、(1)(2)【解析】(1)根据为等边三角形得出,(2)代入弧长公式和面积公式计算.【详解】(1)由于圆的半径为,弦的长为,所以为等边三角形,所以.(2)因为,所以.,又,所以.【点睛】本题主要考查了扇形的相关知识点,弦长、弧长、面积等,属于基础题,解题的关键是在于公式的熟练运用.20、(1)单调递增区间为,单调递减区间为;(2)【解析】(1)首先确定的定义域,将其整理为,利用复合函数单调性的判断方法得到单调性,结合单调性可求得最值;(2)根据对数函数单调性可将恒成立不等式转化为,采用分离变量法可得,结合对勾函数单调性可求得,由此可得结果.【小问1详解】由得:,的定义域为;,令,则在上单调递增,在上单调递减,又在定义域内单调递增,由复合函数单调性可知:的单调递增区间为,单调递减区间为;由单调性可知:.【小问2详解】在上恒成立,,即,在上恒成立,;令,则在上单调递增,在上单调递减,,,即实数的取值范围为.【点睛】关键点点睛:本题考查对数型复合函数单调性和最值的求解、恒成立问题的求解;求解恒成立问题的关键是能够将对数函数值之间的大小关系转化为一元二次不等式在区间内恒成立问题的求解,进而可采用分离变量的方法或讨论二次函数图象的方式来进行求解.21、(1);(2);(3).【解析】根据题意,由函数奇偶性的性质可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论