新高考数学一轮复习提升练习考点04 基本不等式及应用 (含解析)_第1页
新高考数学一轮复习提升练习考点04 基本不等式及应用 (含解析)_第2页
新高考数学一轮复习提升练习考点04 基本不等式及应用 (含解析)_第3页
新高考数学一轮复习提升练习考点04 基本不等式及应用 (含解析)_第4页
新高考数学一轮复习提升练习考点04 基本不等式及应用 (含解析)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考向04基本不等式及应用(2021·全国高考真题)已知SKIPIF1<0,SKIPIF1<0是椭圆SKIPIF1<0:SKIPIF1<0的两个焦点,点SKIPIF1<0在SKIPIF1<0上,则SKIPIF1<0的最大值为()A.13 B.12 C.9 D.6【答案】C【分析】本题通过利用椭圆定义得到SKIPIF1<0,借助基本不等式SKIPIF1<0即可得到答案.【详解】由题,SKIPIF1<0,则SKIPIF1<0,所以SKIPIF1<0(当且仅当SKIPIF1<0时,等号成立).故选:C.【点睛】椭圆上的点与椭圆的两焦点的距离问题,常常从椭圆的定义入手,注意基本不等式得灵活运用,或者记住定理:两正数,和一定相等时及最大,积一定,相等时和最小,也可快速求解.1.利用均值不等式求最值遵循的原则:“一正二定三等”(1)正:使用均值不等式所涉及的项必须为正数,如果有负数则考虑变形或使用其它方法(2)定:使用均值不等式求最值时,变形后的一侧不能还含有核心变量.(3)等:若能利用均值不等式求得最值,则要保证等号成立,要注意以下两点:①若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)②若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围.注意:形如的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.2.通过拼凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以拼凑出和或积的定值为目标;(3)拆项、添项应注意检验利用基本不等式的前提.3.利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等.1.重要不等式当a、b是任意实数时,有a2+b2≥2ab,当且仅当a=b时,等号成立.2.基本不等式当a>0,b>0时有,当且仅当a=b时,等号成立.3.基本不等式与最值已知x、y都是正数.(1)若x+y=s(和为定值),则当x=y时,积xy取得最大值.(2)若xy=p(积为定值),则当x=y时,和x+y取得最小值.【知识拓展】常用推论:(1)()(2)(,);(3)1.(2021·江苏南通市·高三其他模拟)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,则下列结论中正确的是()A.SKIPIF1<0有最小值4 B.SKIPIF1<0有最小值SKIPIF1<0C.SKIPIF1<0有最大值SKIPIF1<0 D.SKIPIF1<0有最大值22.(2021·山东烟台市·高三其他模拟)(多选题)下列命题正确的是()A.若SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0B.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0C.若SKIPIF1<0,则SKIPIF1<0D.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的最小值为33.(2020·石家庄市藁城区第一中学高三其他模拟(文))若直线SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)被圆SKIPIF1<0截得弦长为SKIPIF1<0,则SKIPIF1<0的最小值是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2020·安徽高三其他模拟(文))在SKIPIF1<0ABC中,角A,B,C所对的边分别为a,b,c,若(4b-c)cosA=acosC,且SKIPIF1<0,则SKIPIF1<0ABC的周长的取值范围___________.1.(2021·北京高三二模)某公司购买一批机器投入生产,若每台机器生产的产品可获得的总利润s(万元)与机器运转时间t(年数,SKIPIF1<0)的关系为SKIPIF1<0,要使年平均利润最大,则每台机器运转的年数t为()A.5 B.6 C.7 D.82.(2021·重庆高三三模)(多选题)已知SKIPIF1<0,SKIPIF1<0为正实数,且SKIPIF1<0,则()A.SKIPIF1<0的最大值为2 B.SKIPIF1<0的最小值为4C.SKIPIF1<0的最小值为3 D.SKIPIF1<0的最小值为SKIPIF1<03.(2021·普宁市第二中学高三其他模拟)(多选题)已知SKIPIF1<0,则下列选项一定正确的是()A.SKIPIF1<0 B.SKIPIF1<0的最大值为SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2021·全国高三其他模拟)(多选题)已知SKIPIF1<0,SKIPIF1<0,则下列说法正确的是()A.SKIPIF1<0最小值为SKIPIF1<0B.若SKIPIF1<0,则SKIPIF1<0的最小值为SKIPIF1<0C.若SKIPIF1<0,则SKIPIF1<0的最小值为SKIPIF1<0D.若SKIPIF1<0,则SKIPIF1<0的最小值为SKIPIF1<05.(2021·江苏扬州市·扬州中学高三其他模拟)已知正实数SKIPIF1<0,SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0的最大值等于______.6.(2021·河北衡水市·高三其他模拟)如图,在平行四边形ABCD中,点E是CD的中点,点F为线段BD上的一动点,若SKIPIF1<0SKIPIF1<0,则SKIPIF1<0的最大值为___________.7.(2021·天津市武清区杨村第一中学高三其他模拟)已知SKIPIF1<0都为正实数,则SKIPIF1<0的最小值为___________.8.(2021·黑龙江大庆市·铁人中学高三三模(理))《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中卷第九勾股中记载:“今有邑,东西七里,南北九里,各中开门.出东门一十五里有木.问出南门几何步而见木?”其算法为:东门南到城角的步数,乘南门东到城角的步数,乘积作被除数,以树距离东门的步数作除数,被除数除以除数得结果,即出南门SKIPIF1<0里见到树,则SKIPIF1<0.若一小城,如图所示,出东门SKIPIF1<0步有树,出南门SKIPIF1<0步能见到此树,则该小城的周长的最小值为(注:SKIPIF1<0里SKIPIF1<0步)________里.9.(2021·浙江高三其他模拟)已知正实数SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0的最小值为_______;SKIPIF1<0的最小值为__.10.(2021·海南高三其他模拟)若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0的最小值是___________,当且仅当___________时,取得最值.11.(2021·河北唐山市·唐山一中高三其他模拟)某小区要建一座八边形的休闲公园,它的主体造型的平面图是由两个相同的矩形SKIPIF1<0和SKIPIF1<0构成的面积为SKIPIF1<0的十字型地域,计划在正方形SKIPIF1<0上建一座花坛,造价为4200元SKIPIF1<0,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元SKIPIF1<0,再在四个空角(图中四个三角形)上铺草坪,造价为80元SKIPIF1<0.设总造价为SKIPIF1<0(单位:元),SKIPIF1<0长为SKIPIF1<0(单位:SKIPIF1<0).SKIPIF1<0的最小值是___________,此时SKIPIF1<0的值是___________.1.(2021·浙江高考真题)已知SKIPIF1<0是互不相同的锐角,则在SKIPIF1<0三个值中,大于SKIPIF1<0的个数的最大值是()A.0 B.1 C.2 D.33.(2021·全国高考真题(文))下列函数中最小值为4的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2020·全国高考真题(理))设SKIPIF1<0为坐标原点,直线SKIPIF1<0与双曲线SKIPIF1<0的两条渐近线分别交于SKIPIF1<0两点,若SKIPIF1<0的面积为8,则SKIPIF1<0的焦距的最小值为()A.4 B.8 C.16 D.324.(2020·天津高考真题)已知SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0的最小值为_________.5.(2020·江苏高考真题)已知SKIPIF1<0,则SKIPIF1<0的最小值是_______.6.(2019·上海高考真题)如图,已知正方形SKIPIF1<0,其中SKIPIF1<0,函数SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,函数SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,当SKIPIF1<0最小时,则SKIPIF1<0的值为_______7.(2019·天津高考真题(理))设SKIPIF1<0,则SKIPIF1<0的最小值为______.8.(2020·全国高考真题(文))设a,b,cSKIPIF1<0R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥SKIPIF1<0.1.【答案】A【分析】根据已知,结合基本不等式分别判断选项即可,但需注意取最值时的条件.【详解】对于选项A,SKIPIF1<0,当且仅当SKIPIF1<0时取等号,故A正确;对于选项B,SKIPIF1<0,当且仅当SKIPIF1<0时取等号,故B错误;对于选项C,SKIPIF1<0,当且仅当SKIPIF1<0时取等号,故C错误;对于选项D,SKIPIF1<0,所以SKIPIF1<0,当且仅当SKIPIF1<0时取等号,故D错误.故选:A.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.2.【答案】ACD【分析】对选项A,利用不等式性质即可判断A正确;对选项B,利用特值法即可判断B错误;对选项C,利用基本不等式性质求解即可;对选项D,首先根据题意得到SKIPIF1<0,从而得到SKIPIF1<0,再展开利用基本不等式求解即可.【详解】对选项A,因为SKIPIF1<0,所以SKIPIF1<0,又因为SKIPIF1<0,所以SKIPIF1<0,故A正确;对选项B,因为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,设SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故B错误;对选项C,因为SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,故C正确;对选项D,因为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,当且仅当SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0时,取等号.故D正确.故选:ACD3.【答案】A【分析】根据直线被圆截得的弦长为4,以及圆的半径为2,可知直线过圆心,即SKIPIF1<0,SKIPIF1<0,根据此特点,可选择基本不等式求出最小值.【详解】直线被圆截得的弦长为4,圆的半径为SKIPIF1<0,圆心为SKIPIF1<0直线过圆心,故SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,当且仅当SKIPIF1<0,即SKIPIF1<0时等号成立,最小值为9.故选:A【点睛】理解题意,直线与圆相交后弦心距、半弦长、半径构成直角三角形,以及由SKIPIF1<0,求SKIPIF1<0的最小值联想用基本不等式求最值.4.【答案】SKIPIF1<0【分析】先根据正弦定理将已知条件边化角,求出SKIPIF1<0,然后利用余弦定理及均值不等式即可求解.【详解】解:SKIPIF1<0,SKIPIF1<0由正弦定理得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以,由余弦定理得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0(b=c时等号成立),所以b+cSKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0ABC的周长的取值范围为SKIPIF1<0,故答案为:SKIPIF1<0.【点睛】关键点点睛:利用余弦定理得边SKIPIF1<0后,结合均值不等式建立不等关系,从而求出b+cSKIPIF1<0,最后根据三角形任意两边之和大于第三边求解.1.【答案】D【分析】根据题意求出年平均利润函数。利用均值不等式求最值.【详解】因为每台机器生产的产品可获得的总利润s(万元)与机器运转时间t(年数,SKIPIF1<0)的关系为SKIPIF1<0,所以年平均利润SKIPIF1<0当且仅当SKIPIF1<0时等号成立,即年平均利润最大,则每台机器运转的年数t为8,故选:D2.【答案】ABD【分析】对条件进行变形,利用不等式的基本性质对选项一一分析即可.【详解】解:因为SKIPIF1<0,当且仅当SKIPIF1<0时取等号,解得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0的最大值为2,A正确;由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,当且仅当SKIPIF1<0,即SKIPIF1<0时取等号,此时取得最小值4,B正确;SKIPIF1<0,当且仅当SKIPIF1<0,即SKIPIF1<0时取等号,C错误;SKIPIF1<0,当且仅当SKIPIF1<0时取等号,此时SKIPIF1<0取得最小值SKIPIF1<0,D正确.故选:ABD.3.【答案】BD【分析】依题意得出SKIPIF1<0的取值范围,由此可得SKIPIF1<0的范围,即可判断A的正误;利用基本不等式可判断B、C的正误;根据基本不等式及二次函数知识即可判断D的正误.【详解】因为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.对于A:由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0,故A错误;对于B:SKIPIF1<0,当且仅当SKIPIF1<0,即SKIPIF1<0时等号成立,所以SKIPIF1<0的最大值为SKIPIF1<0,故B正确;对于C:因为SKIPIF1<0,所以SKIPIF1<0当且仅当SKIPIF1<0,即SKIPIF1<0时等号成立,故C错误;对于D:因为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,当且仅当SKIPIF1<0,即SKIPIF1<0时等号成立,因为SKIPIF1<0,所以SKIPIF1<0,当SKIPIF1<0时取最大值,此时SKIPIF1<0,此时两次取等号条件不一致,故SKIPIF1<0,故D正确.故选:BD.【点睛】方法点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.4.【答案】BC【分析】选项A.设SKIPIF1<0,求出导数,得出单调性,可判断;选项B.先将SKIPIF1<0展开先利用均值不等式放缩再配方,然后利用均值不等式可判断;选项C由SKIPIF1<0得SKIPIF1<0,代入SKIPIF1<0由均值不等式可判断;选项D.由SKIPIF1<0两边同时乘以SKIPIF1<0结合均值不等式可得答案.【详解】对于A,设SKIPIF1<0,则SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0不为定值,故A错误.对于B,SKIPIF1<0SKIPIF1<0,当且仅当SKIPIF1<0即SKIPIF1<0时取等号,故B正确.对于C,由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,当且仅当SKIPIF1<0时取等号,故C正确.对于D,由SKIPIF1<0得SKIPIF1<0,则SKIPIF1<0,解得SKIPIF1<0,故D错误.故选:BC.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.5.【答案】1【分析】由题意利用基本不等式可得SKIPIF1<0,由此求得SKIPIF1<0的最大值.【详解】正实数SKIPIF1<0,SKIPIF1<0满足SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0(当且仅当SKIPIF1<0时,取等号),∴SKIPIF1<0,即SKIPIF1<0,则SKIPIF1<0的最大值等于1,故答案为:1.6.【答案】SKIPIF1<0【分析】设BD与AE的交点为O,结合比例关系可求出SKIPIF1<0SKIPIF1<0,得出SKIPIF1<0,则SKIPIF1<0可代换为SKIPIF1<0,结合三点共线性质得SKIPIF1<0,原式代换为SKIPIF1<0,再结合基本不等式即可求解【详解】如图,设BD与AE的交点为O,则由SKIPIF1<0,得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.由点O,F,B共线,得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,当且仅当SKIPIF1<0时取等号,即SKIPIF1<0的最大值为SKIPIF1<0故答案为:SKIPIF1<0【点睛】本题考查平面向量三点共线性质的应用,基本不等式求最值,属于中档题7.【答案】SKIPIF1<0【分析】化简SKIPIF1<0,由基本不等式得SKIPIF1<0,再代入原式得SKIPIF1<0,判断相等条件后即可得最小值.【详解】SKIPIF1<0,因为SKIPIF1<0都为正实数,SKIPIF1<0,当且仅当SKIPIF1<0,即SKIPIF1<0时等号成立,所以SKIPIF1<0,当且仅当SKIPIF1<0,即SKIPIF1<0时等号成立,综上所述,当SKIPIF1<0时,SKIPIF1<0取最小值为SKIPIF1<0.故答案为:SKIPIF1<0【点睛】解答本题的关键在于分别利用两次基本不等式,根据“一正二定三相等”的原则判断最小值.8.【答案】SKIPIF1<0【分析】根据题意得出SKIPIF1<0,进而可得出SKIPIF1<0,结合基本不等式求SKIPIF1<0的最小值即可.【详解】因为SKIPIF1<0里SKIPIF1<0步,由图可知,SKIPIF1<0步SKIPIF1<0里,SKIPIF1<0步SKIPIF1<0里,SKIPIF1<0,则SKIPIF1<0,且SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,则SKIPIF1<0,所以,该小城的周长为SKIPIF1<0(里).故答案为:SKIPIF1<0.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.9.【答案】9SKIPIF1<0【分析】第一空将SKIPIF1<0化为SKIPIF1<0,然后利用均值不等式即可求出结果;第二空利用柯西不等式即可求得结果.【详解】因为正实数SKIPIF1<0满足SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,当且仅当SKIPIF1<0时取到最小值,由柯西不等式可知,SKIPIF1<0,当且仅当SKIPIF1<0,即SKIPIF1<0时,等号成立,所以有SKIPIF1<0.故答案为:9;SKIPIF1<0.10.【答案】8SKIPIF1<0【分析】利用乘“1”法及基本不等式计算可得;【详解】解:因为SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,当且仅当SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0时取等号;故答案为:SKIPIF1<0,SKIPIF1<011.【答案】118000SKIPIF1<0【分析】根据已知条件建立函数关系式,然后化简整理,再利用均值不等式即可求解.【详解】由题意,SKIPIF1<0,又SKIPIF1<0,有SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0当且仅当SKIPIF1<0,即SKIPIF1<0时,等号成立所以当SKIPIF1<0,SKIPIF1<0最小且最小值为SKIPIF1<0故答案为:SKIPIF1<0,SKIPIF1<0【点睛】利用基本不等式求最值时,要注意三个必须满足的条件:1.一正:各项必须均为正数;2.二定:求和的最小值时必须把构成的二项之积转化成定值;求积的最大值时,必须把构成积的因式的和转化为定值;3.三相等:利用均值不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值.1.【答案】C【分析】利用基本不等式或排序不等式得SKIPIF1<0,从而可判断三个代数式不可能均大于SKIPIF1<0,再结合特例可得三式中大于SKIPIF1<0的个数的最大值.【详解】法1:由基本不等式有SKIPIF1<0,同理SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0不可能均大于SKIPIF1<0.取SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,故三式中大于SKIPIF1<0的个数的最大值为2,故选:C.法2:不妨设SKIPIF1<0,则SKIPIF1<0,由排列不等式可得:SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0不可能均大于SKIPIF1<0.取SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,故三式中大于SKIPIF1<0的个数的最大值为2,故选:C.【点睛】思路分析:代数式的大小问题,可根据代数式的积的特征选择用基本不等式或拍雪进行放缩,注意根据三角变换的公式特征选择放缩的方向.2.【答案】C【分析】根据二次函数的性质可判断SKIPIF1<0选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出SKIPIF1<0不符合题意,SKIPIF1<0符合题意.【详解】对于A,SKIPIF1<0,当且仅当SKIPIF1<0时取等号,所以其最小值为SKIPIF1<0,A不符合题意;对于B,因为SKIPIF1<0,SKIPIF1<0,当且仅当SKIPIF1<0时取等号,等号取不到,所以其最小值不为SKIPIF1<0,B不符合题意;对于C,因为函数定义域为SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,当且仅当SKIPIF1<0,即SKIPIF1<0时取等号,所以其最小值为SKIPIF1<0,C符合题意;对于D,SKIPIF1<0,函数定义域为SKIPIF1<0,而SKIPIF1<0且SKIPIF1<0,如当SKIPIF1<0,SKIPIF1<0,D不符合题意.故选:C.【点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.3.【答案】B【分析】因为SKIPIF1<0,可得双曲线的渐近线方程是SKIPIF1<0,与直线SKIPIF1<0联立方程求得SKIPIF1<0,SKIPIF1<0两点坐标,即可求得SKIPIF1<0,根据SKIPIF1<0的面积为SKIPIF1<0,可得SKIPIF1<0值,根据SKIPIF1<0,结合均值不等式,即可求得答案.【详解】SKIPIF1<0SKIPIF1<0SKIPIF1<0双曲线的渐近线方程是SKIPIF1<0SKIPIF1<0直线SKIPIF1<0与双曲线SKIPIF1<0的两条渐近线分别交于SKIPIF1<0,SKIPIF1<0两点不妨设SKIPIF1<0为在第一象限,SKIPIF1<0在第四象限联立SKIPIF1<0,解得SKIPIF1<0故SKIPIF1<0联立SKIPIF1<0,解得SKIPIF1<0故SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0面积为:SKIPIF1<0SKIPIF1<0双曲线SKIPIF1<0SKIPIF1<0其焦距为SKIPIF1<0当且仅当SKIPIF1<0取等号SKIPIF1<0SKIPIF1<0的焦距的最小值:SKIPIF1<0故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.4.【答案】4【分析】根据已知条件,将所求的式子化为SKIPIF1<0,利用基本不等式即可求解.【详解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,当且仅当SKIPIF1<0=4时取等号,结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论