高考数学二轮复习 中档大题规范练(三)概率与统计 文试题_第1页
高考数学二轮复习 中档大题规范练(三)概率与统计 文试题_第2页
高考数学二轮复习 中档大题规范练(三)概率与统计 文试题_第3页
高考数学二轮复习 中档大题规范练(三)概率与统计 文试题_第4页
高考数学二轮复习 中档大题规范练(三)概率与统计 文试题_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(三)概率与统计1.(2018·葫芦岛模拟)海水养殖场使用网箱养殖的方法,收获时随机抽取了100个网箱,测量各网箱水产品的产量(单位:kg),其产量都属于区间[25,50],按如下形式分成5组,第一组:[25,30),第二组:[30,35),第三组:[35,40),第四组:[40,45),第五组:[45,50],得到频率分布直方图如图:定义箱产量在[25,30)(单位:kg)的网箱为“低产网箱”,箱产量在区间[45,50]的网箱为“高产网箱”.(1)若同一组中的每个数据可用该组区间的中点值代替,试计算样本中的100个网箱的产量的平均数;(2)按照分层抽样的方法,从这100个样本中抽取25个网箱,试计算各组中抽取的网箱数;(3)若在(2)抽取到的“低产网箱”及“高产网箱”中再抽取2箱,记其产量分别为m,n,求|m-n|>10的概率.解(1)样本中的100个网箱的产量的平均数eq\x\to(x)=(27.5×0.024+32.5×0.040+37.5×0.064+42.5×0.056+47.5×0.016)×5=37.5.(2)各组网箱数分别为:12,20,32,28,8,要在此100箱中抽取25箱,则分层抽样各组应抽数3,5,8,7,2.(3)由(2)知,从低产网箱3箱和高产网箱2箱共5箱中要抽取2箱,设低产网箱中3箱编号为1,2,3,高产网箱中2箱编号为4,5,则一共有10种抽法,基本事件为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),满足条件|m-n|>10的情况为从高、低产网箱中各取1箱,基本事件为(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),共6种,所以满足事件A:|m-n|>10的概率为P(A)=eq\f(6,10)=eq\f(3,5).2.(2016·四川)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.解(1)由频率分布直方图可知,月均用水量在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(2)估计全市居民中月均用水量不低于3吨的人数为3.6万.理由如下:由(1)知,100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300000×0.12=36000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.3.(2018·宁夏银川一中模拟)为了参加某数学竞赛,某高级中学对高二年级理科、文科两个数学兴趣小组的同学进行了赛前模拟测试,成绩(单位:分)记录如下:理科:79,81,81,79,94,92,85,89.文科:94,80,90,81,73,84,90,80.(1)画出理科、文科两组同学成绩的茎叶图;(2)计算理科、文科两组同学成绩的平均数和方差,并从统计学的角度分析,哪组同学在此次模拟测试中发挥比较好;(3)若在成绩不低于90分的同学中随机抽出3人进行培训,求抽出的3人中既有理科组同学又有文科组同学的概率.(参考公式:样本数据x1,x2,…,xn的方差:s2=eq\f(1,n)[(x1-eq\x\to(x))2+(x2-eq\x\to(x))2+…+(xn-eq\x\to(x))2],其中eq\x\to(x)为样本平均数).解(1)理科、文科两组同学成绩的茎叶图如下:(2)从平均数和方差的角度看,理科组同学在此次模拟测试中发挥比较好.理由如下:理科同学成绩的平均数eq\x\to(x)1=eq\f(1,8)×(79+79+81+81+85+89+92+94)=85,方差是seq\o\al(2,1)=eq\f(1,8)×[(79-85)2+(79-85)2+(81-85)2+(81-85)2+(85-85)2+(89-85)2+(92-85)2+(94-85)2]=31.25;文科同学成绩的平均数eq\x\to(x)2=eq\f(1,8)×(73+80+80+81+84+90+90+94)=84.方差是seq\o\al(2,2)=eq\f(1,8)×[(73-84)2+(80-84)2+(80-84)2+(81-84)2+(84-84)2+(90-84)2+(90-84)2+(94-84)2]=41.75;由于eq\x\to(x)1>eq\x\to(x)2,seq\o\al(2,1)<seq\o\al(2,2),所以理科组同学在此次模拟测试中发挥比较好.(3)设理科组同学中成绩不低于90分的2人分别为A,B,文科组同学中成绩不低于90分的3人分别为a,b,c,则从他们中随机抽出3人有以下10种可能:ABa,ABb,ABc,Aab,Aac,Abc,Bab,Bac,Bbc,abc.其中全是文科组同学的情况只有1种是abc,没有全是理科组同学的情况,记“抽出的3人中既有理科组同学又有文科组同学”为事件M,则P(M)=1-eq\f(1,10)=eq\f(9,10).4.2018年6月14日,第二十一届世界杯足球赛在俄罗斯拉开帷幕.为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下2×2列联表.男女总计喜爱3040不喜爱40总计100(1)将2×2列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?(2)在不喜爱足球运动的观众中,按性别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.附:K2=eq\f(nad-bc2,a+bc+da+cb+d),其中n=a+b+c+d.P(K2≥k0)0.0100.0050.001k06.6357.87910.828解(1)补充列联表如下:男女总计喜爱301040不喜爱204060总计5050100由列联表知K2=eq\f(100×30×40-10×202,50×50×40×60)≈16.667>10.828.故可以在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关.(2)由分层抽样知,从不喜爱足球运动的观众中抽取6人,其中男性有6×eq\f(20,60)=2(人),女性有6×eq\f(40,60)=4(人).记男性观众分别为a1,a2,女性观众分别为b1,b2,b3,b4,随机抽取2人,基本事件有(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4),(b1,a1),(b1,a2),(b2,a1),(b2,a2),(b3,a1),(b3,a2),(b4,a1),(b4,a2),(a1,a2),共15种.记至少有一位男性观众为事件A,则事件A包含(b1,a1),(b1,a2),(b2,a1),(b2,a2),(b3,a1),(b3,a2),(b4,a1),(b4,a2),(a1,a2),共9个基本事件,由古典概型,知P(A)=eq\f(9,15)=eq\f(3,5).5.(2016·全国Ⅲ改编)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008~2014.(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量.附注:参考数据:eq\i\su(i=1,7,y)i=9.32,eq\i\su(i=1,7,t)iyi=40.17,eq\r(\i\su(i=1,7,)yi-\x\to(y)2)=0.55,eq\r(7)≈2.646.参考公式:相关系数r=eq\f(\i\su(i=1,n,)ti-\x\to(t)yi-\x\to(y),\r(\i\su(i=1,n,)ti-\x\to(t)2\i\su(i=1,n,)yi-\x\to(y)2)),回归方程eq\o(y,\s\up6(^))=eq\o(a,\s\up6(^))+eq\o(b,\s\up6(^))t中斜率和截距的最小二乘估计公式分别为:eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,n,)ti-\x\to(t)yi-\x\to(y),\i\su(i=1,n,)ti-\x\to(t)2),eq\o(a,\s\up6(^))=eq\x\to(y)-eq\o(b,\s\up6(^))eq\x\to(t).解(1)由折线图中数据和附注中参考数据得eq\x\to(t)=4,eq\i\su(i=1,7,)(ti-eq\x\to(t))2=28,eq\r(\i\su(i=1,7,)yi-\x\to(y)2)=0.55.eq\i\su(i=1,7,)(ti-eq\x\to(t))(yi-eq\x\to(y))=eq\i\su(i=1,7,t)iyi-eq\x\to(t)eq\i\su(i=1,7,y)i=40.17-4×9.32=2.89,所以r≈eq\f(2.89,0.55×2×2.646)≈0.99.因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系.(2)由eq\x\to(y)=eq\f(9.32,7)≈1.331及(1)得eq\o(b,\s\up6(^))=eq\f(\i\su(i=1,7,)ti-\x\to(t)yi-\x\to(y),\i\su(i=1,7,)ti-\x\to(t)2)=eq\f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论