山东省枣庄薛城区五校联考2024届十校联考最后数学试题含解析_第1页
山东省枣庄薛城区五校联考2024届十校联考最后数学试题含解析_第2页
山东省枣庄薛城区五校联考2024届十校联考最后数学试题含解析_第3页
山东省枣庄薛城区五校联考2024届十校联考最后数学试题含解析_第4页
山东省枣庄薛城区五校联考2024届十校联考最后数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省枣庄薛城区五校联考2024学年十校联考最后数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A. B. C. D.2.对于代数式ax2+bx+c(a≠0),下列说法正确的是()①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④3.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30° B.40°C.60° D.70°4.cos60°的值等于()A.1 B. C. D.5.如图,菱形ABCD中,E.F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.246.下列图形中,不是轴对称图形的是()A. B. C. D.7.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:①AB=4;②b2-4ac>0;③ab<0;④a2-ab+ac<0,其中正确的结论有()个.A.3 B.4 C.2 D.18.一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13 B.14 C.15 D.169.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是()A.B.C.D.10.若△÷,则“△”可能是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在△ABC中,AB=AC,BC=8.是△ABC的外接圆,其半径为5.若点A在优弧BC上,则的值为_____________.12.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.13.已知n>1,M=,N=,P=,则M、N、P的大小关系为.14.若,,则的值为________.15.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是__________.16.已知关于x的二次函数y=x2-2x-2,当a≤x≤a+2时,函数有最大值1,则a的值为________.三、解答题(共8题,共72分)17.(8分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?18.(8分)如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.(1)求证:;(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果与相似,求BP的长.19.(8分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.A、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?20.(8分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,,求末端操作器节点到地面直线的距离.(结果保留根号)21.(8分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率.22.(10分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由23.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.(1)求抛物线的解析式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.24.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3,求弦AD的长.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】

过F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF===,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论.【题目详解】过F作FH⊥AD于H,交ED于O,则FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故选B.【题目点拨】构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线2、A【解题分析】设(1)如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则说明在中,当x=p和x=q时的y值相等,但并不能说明此时p、q是与x轴交点的横坐标,故①中结论不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,则说明在中当x=m、n、s时,对应的y值相等,因此m、n、s中至少有两个数是相等的,故②错误;(3)如果ac<0,则b2-4ac>0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c,故③在结论正确;(4)如果ac>0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以④中结论不一定成立.综上所述,四种说法中正确的是③.故选A.3、A【解题分析】

∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选A.4、A【解题分析】

根据特殊角的三角函数值直接得出结果.【题目详解】解:cos60°=故选A.【题目点拨】识记特殊角的三角函数值是解题的关键.5、D【解题分析】

根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.【题目详解】、分别是、的中点,是的中位线,,菱形的周长.故选:.【题目点拨】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.6、A【解题分析】

观察四个选项图形,根据轴对称图形的概念即可得出结论.【题目详解】根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形.故选A.【题目点拨】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.7、A【解题分析】

利用抛物线的对称性可确定A点坐标为(-3,0),则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;由抛物线开口向下得到a>0,再利用对称轴方程得到b=2a>0,则可对③进行判断;利用x=-1时,y<0,即a-b+c<0和a>0可对④进行判断.【题目详解】∵抛物线的对称轴为直线x=-1,点B的坐标为(1,0),∴A(-3,0),∴AB=1-(-3)=4,所以①正确;∵抛物线与x轴有2个交点,∴△=b2-4ac>0,所以②正确;∵抛物线开口向下,∴a>0,∵抛物线的对称轴为直线x=-=-1,∴b=2a>0,∴ab>0,所以③错误;∵x=-1时,y<0,∴a-b+c<0,而a>0,∴a(a-b+c)<0,所以④正确.故选A.【题目点拨】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了二次函数的性质.8、C【解题分析】

解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I.因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°.所以都是等边三角形.所以所以六边形的周长为3+1+4+2+2+3=15;故选C.9、C【解题分析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.故选C.点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.10、A【解题分析】

直接利用分式的乘除运算法则计算得出答案.【题目详解】。故选:A.【题目点拨】考查了分式的乘除运算,正确分解因式再化简是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解题分析】【分析】作高线AD,由等腰三角形的性质可知D为BC的中点,即AD为BC的垂直平分线,根据垂径定理,AD过圆心O,由BC的长可得出BD的长,根据勾股定理求出半径,继而可得AD的长,在直角三角形ABD中根据正切的定义求解即可.试题解析:如图,作AD⊥BC,垂足为D,连接OB,∵AB=AC,∴BD=CD=BC=×8=4,∴AD垂直平分BC,∴AD过圆心O,在Rt△OBD中,OD==3,∴AD=AO+OD=8,在Rt△ABD中,tan∠ABC==2,故答案为2.【题目点拨】本题考查了垂径定理、等腰三角形的性质、正切的定义等知识,综合性较强,正确添加辅助线构造直角三角形进行解题是关键.12、先将图2以点A为旋转中心逆时针旋转,再将旋转后的图形向左平移5个单位.【解题分析】

变换图形2,可先旋转,然后平移与图2拼成一个矩形.【题目详解】先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形.故答案为:先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位.【题目点拨】本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.13、M>P>N【解题分析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.点睛:本题考查了不等式的性质和利用作差法比较两个代数式的大小.作差法比较大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本题还用到了不等式的传递性,即如果a>b,b>c,那么a>b>c.14、-.【解题分析】分析:已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.详解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为.点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.15、.【解题分析】

先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.【题目详解】解:∵由图可知,黑色方砖4块,共有16块方砖,∴黑色方砖在整个区域中所占的比值∴它停在黑色区域的概率是;故答案为.【题目点拨】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、-1或1【解题分析】

利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+2时函数有最大值1,即可得出关于a的一元一次方程,解之即可得出结论.【题目详解】解:当y=1时,x2-2x-2=1,

解得:x1=-1,x2=3,

∵当a≤x≤a+2时,函数有最大值1,

∴a=-1或a+2=3,即a=1.

故答案为-1或1.【题目点拨】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.三、解答题(共8题,共72分)17、甲、乙两公司人均捐款分别为80元、100元.【解题分析】试题分析:本题考察的是分式的应用题,设甲公司人均捐款x元,根据题意列出方程即可.试题解析:设甲公司人均捐款x元解得:经检验,为原方程的根,80+20=100答:甲、乙两公司人均各捐款为80元、100元.18、(1)见解析;(2);(3)当或8时,与相似.【解题分析】

(1)想办法证明即可解决问题;(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;【题目详解】(1)证明:四边形ABCD是等腰梯形,,,,,,,.(2)解:作于M,于N.则四边形是矩形.在中,,,,,,.(3)解:,,,相似时,与相似,,当时,,此时,当时,,此时,综上所述,当PB=5或8时,与△相似.【题目点拨】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.19、(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解题分析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.【题目详解】(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:,答:A种奖品每件16元,B种奖品每件4元;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【题目点拨】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.20、()cm.【解题分析】

作BG⊥CD,垂足为G,BH⊥AF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.【题目详解】如图,作BG⊥CD,垂足为G,BH⊥AF,垂足为H,在中,∠BCD=60°,BC=60cm,∴,在中,∠BAF=45°,AB=60cm,∴,∴D到L的距离.【题目点拨】本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.21、(1)P(两个小孩都是女孩)=;(2)P(三个小孩中恰好是2女1男)=.【解题分析】

(1)画出树状图即可解题,(2)画出树状图即可解题.【题目详解】(1)画树状图如下:由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好都是女孩的有1种可能,∴P(两个小孩都是女孩)=.(2)画树状图如下:由树状图可知,生育两胎共有8种等可能结果,其中这三个小孩中恰好是2女1男的有3种结果,∴P(三个小孩中恰好是2女1男)=.【题目点拨】本题考查了画树状图求解概率,中等难度,画出树状图找到所有可能性是解题关键.22、(1)w=-10x2+700x-10000;(2)即销售单价为35元时,该文具每天的销售利润最大;(3)A方案利润更高.【解题分析】

试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【题目详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有最大值,此时,最大值为2000元.B方案中:,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有最大值,此时,最大值为1250元.∵2000>1250,∴A方案利润更高23、(1);(1),E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).【解题分析】

(1)设B(x1,5),由已知条件得,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.(1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值,最终得到E点坐标.(3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P点坐标.又由△ABC∽△GNP,且时,得n=3或n=﹣2(舍去).求得P点坐标.【题目详解】解:(1)设B(x1,5).由A(﹣1,5),对称轴直线x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴抛物线解析式为y=,(1)如图1,∵B(2,5),C(5,1).∴直线BC的解析式为y=﹣x+1.由E在直线BC上,则设E(m,=﹣m+1.),F(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF•OB,∴S△CBF=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论