2024届湖北省恩施土家族苗族自治州恩施市市级名校中考数学五模试卷含解析_第1页
2024届湖北省恩施土家族苗族自治州恩施市市级名校中考数学五模试卷含解析_第2页
2024届湖北省恩施土家族苗族自治州恩施市市级名校中考数学五模试卷含解析_第3页
2024届湖北省恩施土家族苗族自治州恩施市市级名校中考数学五模试卷含解析_第4页
2024届湖北省恩施土家族苗族自治州恩施市市级名校中考数学五模试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024学年湖北省恩施土家族苗族自治州恩施市市级名校中考数学五模试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形 D.四条边都相等的四边形是菱形2.已知A、B两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A市到B市乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为()A. B.C. D.3.等腰中,,D是AC的中点,于E,交BA的延长线于F,若,则的面积为()A.40 B.46 C.48 D.504.如图,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠15.的负倒数是()A. B.- C.3 D.﹣36.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是()A.27分钟 B.20分钟 C.13分钟 D.7分钟7.下列计算正确的是()A.2m+3n=5mnB.m2•m3=m6C.m8÷m6=m2D.(﹣m)3=m38.下列图形中,是轴对称图形的是()A. B. C. D.9.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<210.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是(

)A.16cm B.18cm C.20cm D.21cm11.若分式有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1 D.x≠012.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为A.1 B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因:=______________________.14.如图,每个小正方形边长为1,则△ABC边AC上的高BD的长为_____.15.函数y=中,自变量x的取值范围是_____.16.函数y=中自变量x的取值范围是___________.17.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_________.18.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy中,直线与双曲线(x>0)交于点.求a,k的值;已知直线过点且平行于直线,点P(m,n)(m>3)是直线上一动点,过点P分别作轴、轴的平行线,交双曲线(x>0)于点、,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为.横、纵坐标都是整数的点叫做整点.①当时,直接写出区域内的整点个数;②若区域内的整点个数不超过8个,结合图象,求m的取值范围.20.(6分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?21.(6分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.(1)求证:四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求AF的长.22.(8分)化简分式,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.23.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.求∠APB的度数;已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.24.(10分)对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B的“确定圆”.如图为点A,B的“确定圆”的示意图.(1)已知点A的坐标为(-1,0),点B的坐标为(3,3),则点A,B的“确定圆”的面积为______;(2)已知点A的坐标为(0,0),若直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,求点B的坐标;(3)已知点A在以P(m,0)为圆心,以1为半径的圆上,点B在直线上,若要使所有点A,B的“确定圆”的面积都不小于9π,直接写出m的取值范围.25.(10分)综合与实践﹣﹣旋转中的数学问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD∽矩形A′B′C′D′,它们各自对角线的交点重合于点O,连接AA′,CC′.请你帮他们解决下列问题:观察发现:(1)如图1,若A′B′∥AB,则AA′与CC′的数量关系是______;操作探究:(2)将图1中的矩形ABCD保持不动,矩形A′B′C′D′绕点O逆时针旋转角度α(0°<α≤90°),如图2,在矩形A′B′C′D′旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;操作计算:(3)如图3,在(2)的条件下,当矩形A′B′C′D′绕点O旋转至AA′⊥A′D′时,若AB=6,BC=8,A′B′=3,求AA′的长.26.(12分)如图,已知是的直径,点、在上,且,过点作,垂足为.求的长;若的延长线交于点,求弦、和弧围成的图形(阴影部分)的面积.27.(12分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲,乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】

根据平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,对选项进行判断即可【题目详解】解:A、两组对边分别相等的四边形是平行四边形,故本选项正确;B、四个内角都相等的四边形是矩形,故本选项正确;C、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;D、四条边都相等的四边形是菱形,故本选项正确.故选C【题目点拨】此题综合考查了平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,熟练掌握判定法则才是解题关键2、D【解题分析】解:设动车速度为每小时x千米,则可列方程为:﹣=.故选D.3、C【解题分析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=×BF×AC=×12×8=48,故选C.4、D【解题分析】

先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.【题目详解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故选:D.【题目点拨】本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.5、D【解题分析】

根据倒数的定义,互为倒数的两数乘积为1,2×=1.再求出2的相反数即可解答.【题目详解】根据倒数的定义得:2×=1.

因此的负倒数是-2.

故选D.【题目点拨】本题考查了倒数,解题的关键是掌握倒数的概念.6、C【解题分析】

先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【题目详解】解:设反比例函数关系式为:,将(7,100)代入,得k=700,∴,将y=35代入,解得;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【题目点拨】本题考查反比例函数的应用,利用数形结合思想解题是关键.7、C【解题分析】

根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【题目详解】解:A、2m与3n不是同类项,不能合并,故错误;B、m2•m3=m5,故错误;C、正确;D、(-m)3=-m3,故错误;故选:C.【题目点拨】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.8、B【解题分析】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.9、B【解题分析】

根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【题目详解】∵函数的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.10、C【解题分析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.11、C【解题分析】

分式分母不为0,所以,解得.故选:C.12、C【解题分析】作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN∧的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=∴PA+PB=PA′+PB=A′B=故选:C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(x-2y)(x-2y+1)【解题分析】

根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.【题目详解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)14、【解题分析】试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:根据勾股定理得:,由网格得:S△ABC=×2×4=4,且S△ABC=AC•BD=×5BD,∴×5BD=4,解得:BD=.考点:1.网格型问题;2.勾股定理;3.三角形的面积.15、x≠﹣.【解题分析】

该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.【题目详解】解:根据分式有意义的条件得:2x+3≠1解得:故答案为【题目点拨】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.16、x≥﹣且x≠1【解题分析】

试题解析:根据题意得:解得:x≥﹣且x≠1.故答案为:x≥﹣且x≠1.17、x+x=75.【解题分析】试题解析:设长方形墙砖的长为x厘米,

可得:x+x=75.18、y=2x+1【解题分析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1),;(2)①3,②.【解题分析】

(1)将代入可求出a,将A点坐标代入可求出k;(2)①根据题意画出函数图像,可直接写出区域内的整点个数;②求出直线的表达式为,根据图像可得到两种极限情况,求出对应的m的取值范围即可.【题目详解】解:(1)将代入得a=4将代入,得(2)①区域内的整点个数是3②∵直线是过点且平行于直线∴直线的表达式为当时,即线段PM上有整点∴【题目点拨】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.20、(1)200;(2)108°;(3)答案见解析;(4)600【解题分析】试题分析:(1)根据体育人数80人,占40%,可以求出总人数.(2)根据圆心角=百分比×360°即可解决问题.(3)求出艺术类、其它类社团人数,即可画出条形图.(4)用样本百分比估计总体百分比即可解决问题.试题解析:(1)80÷40%=200(人).

∴此次共调查200人.

(2)×360°=108°.∴文学社团在扇形统计图中所占圆心角的度数为108°.

(3)补全如图,(4)1500×40%=600(人).

∴估计该校喜欢体育类社团的学生有600人.【题目点拨】此题主要考查了条形图与统计表以及扇形图的综合应用,由条形图与扇形图结合得出调查的总人数是解决问题的关键,学会用样本估计总体的思想,属于中考常考题型.21、(1)见解析;(2)2【解题分析】

(1)方法一:连接AC,利用角平分线判定定理,证明DA=DC即可;方法二:只要证明△AEB≌△AFD.可得AB=AD即可解决问题;(2)在Rt△ACF,根据AF=CF·tan∠ACF计算即可.【题目详解】(1)证法一:连接AC,如图.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四边形ABCD是菱形.证法二:如图,∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB≌△AFD.∴AB=AD,∴四边形ABCD是菱形.(2)连接AC,如图.∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°,∵四边形ABCD是菱形,∴∠ACF=60°,在Rt△CFA中,AF=CF•tan∠ACF=2.【题目点拨】本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。22、x取0时,为1或x取1时,为2【解题分析】试题分析:利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.试题解析:解:原式=[]===x+1,∵x1-4≠0,x-2≠0,∴x≠1且x≠-1且x≠2,当x=0时,原式=1.或当x=1时,原式=2.23、(1)30°;(2)海监船继续向正东方向航行是安全的.【解题分析】

(1)根据直角的性质和三角形的内角和求解;(2)过点P作PH⊥AB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.【题目详解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)过点P作PH⊥AB于点H在Rt△APH中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50解得PH=25>25,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形24、(1)25π;(2)点B的坐标为或;(3)m≤-5或m≥2【解题分析】

(1)根据勾股定理,可得AB的长,根据圆的面积公式,可得答案;(2)根据确定圆,可得l与⊙A相切,根据圆的面积,可得AB的长为3,根据等腰直角三角形的性质,可得,可得答案;(3)根据圆心与直线垂直时圆心到直线的距离最短,根据确定圆的面积,可得PB的长,再根据30°的直角边等于斜边的一半,可得CA的长.【题目详解】(1)(1)∵A的坐标为(−1,0),B的坐标为(3,3),∴AB==5,根据题意得点A,B的“确定圆”半径为5,∴S圆=π×52=25π.故答案为25π;(2)∵直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,∴⊙A的半径AB=3且直线y=x+b与⊙A相切于点B,如图,∴AB⊥CD,∠DCA=45°.,①当b>0时,则点B在第二象限.过点B作BE⊥x轴于点E,∵在Rt△BEA中,∠BAE=45°,AB=3,∴.∴.②当b<0时,则点B'在第四象限.同理可得.综上所述,点B的坐标为或.(3)如图2,,直线当y=0时,x=3,即C(3,0).∵tan∠BCP=,∴∠BCP=30°,∴PC=2PB.P到直线的距离最小是PB=4,∴PC=1.3-1=-5,P1(-5,0),3+1=2,P(2,0),当m≤-5或m≥2时,PD的距离大于或等于4,点A,B的“确定圆”的面积都不小于9π.点A,B的“确定圆”的面积都不小于9π,m的范围是m≤-5或m≥2.【题目点拨】本题考查了一次函数综合题,解(1)的关键是利用勾股定理得出AB的长;解(2)的关键是等腰直角三角形的性质得出;解(3)的关键是利用30°的直角边等于斜边的一半得出PC=2PB.25、(1)AA′=CC′;(2)成立,证明见解析;(3)AA′=【解题分析】

(1)连接AC、A′C′,根据题意得到点A、A′、C′、C在同一条直线上,根据矩形的性质得到OA=OC,OA′=OC′,得到答案;(2)连接AC、A′C′,证明△A′OA≌△C′OC,根据全等三角形的性质证明;(3)连接AC,过C作CE⊥AB′,交AB′的延长线于E,根据相似多边形的性质求出B′C′,根据勾股定理计算即可.【题目详解】(1)AA′=CC′,理由如下:连接AC、A′C′,∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB,∴点A、A′、C′、C在同一条直线上,由矩形的性质可知,OA=OC,OA′=OC′,∴AA′=CC′,故答案为AA′=CC′;(2)(1)中的结论还成立,AA′=CC′,理由如下:连接AC、A′C′,则AC、A′C′都经过点O,由旋转的性质可知,∠A′OA=∠C′OC,∵四边形ABCD和四边形A′B′C′D′都是矩形,∴OA=OC,OA′=OC′,在△A′OA和△C′OC中,,∴△A′OA≌△C′OC,∴AA′=CC′;(3)连接AC,过C作CE⊥AB′,交AB′的延长线于E,∵矩形ABCD∽矩形A′B′C′D′,∴,即,解得,B′C′=4,∵∠EB′C=∠B′C′C=∠E=90°,∴四边形B′ECC′为矩形,∴EC=B′C′=4,在Rt△ABC中,AC==10,在Rt△AEC中,AE==2,∴AA′+B′E=2﹣3,又AA′=CC′=B′E,∴AA′=.【题目点拨】本题考查的是矩形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、矩形的性质是解题的关键.26、(1)OE=;(2)阴影部分的面积为【解题分析】

(1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论