特级教师改编中考数学几何模型24讲:专题01 截长补短模型证明问题(学生版)_第1页
特级教师改编中考数学几何模型24讲:专题01 截长补短模型证明问题(学生版)_第2页
特级教师改编中考数学几何模型24讲:专题01 截长补短模型证明问题(学生版)_第3页
特级教师改编中考数学几何模型24讲:专题01 截长补短模型证明问题(学生版)_第4页
特级教师改编中考数学几何模型24讲:专题01 截长补短模型证明问题(学生版)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题01截长补短模型证明问题【专题说明】截长补短法在初中几何教学中有着十分重要的作用,它主要是用来证线段的和差问题,而且这种方法一直贯穿着整个几何教学的始终.那么什么是截长补短法呢?所谓截长补短其实包含两层意思,即截长和补短.截长就是在较长的线段上截取一段等于要证的两段较短的线段中的一段,证剩下的那一段等于另外一段较短的线段.当条件或结论中出现a+b=c时,用截长补短.【知识总结】1、补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2、截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。3、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等有关性质加以说明,这种做法一般遇到证明三条线段之间关系时常用。如图1,若证明线段AB,CD,EF之间存在EF=AB+CD,可以考虑截长补短法截长法:如图2,在EF上截取EG=AB,在证明GF=CD即可;补短法:如图3,延长AB至H点,使BH=CD,再证明AH=EF即可.【类型】一、截长“截长”是指在较长的线段上截取另外两条较短的线段,截取的作法不同,涉及四种方法。

【类型】二、补短“补短”指的是选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破,根据辅助线作法的不同也涉及四种不同的方法。

【基础训练】1、如图,AC平分∠BAD,CE⊥AB于点E,∠B+∠D=180°,求证:AE=AD+BE.2、如图,已知在△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD3、如图,在五边形ABCDE中,AB=AE,BC+DE=CD,∠B+∠E=180°,求证:AD平分∠CDE.4、已知四边形ABCD中,∠ABC+∠ADC=180°,AB=BC如图2,点P,Q分别在线段AD,DC上,满足PQ=AP+CQ,求证:∠PBQ=90°-12∠ADC

5、如图,在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于点O,求证:AE+CE=AC.6、如图所示,AB∥CD,BE,CE分别是∠ABC,∠BCD的平分线,点E在AD上,求证:BC=AB+CD.

7、四边形ABCD中,BD>AB,AD=DC,DE⊥BC,BD平分∠ABC证明:∠BAD+∠BCD=180°DE=3,BE=6,求四边形ABCD的面积.8、已知:在△ABC中,AB=CD-BD,求证:∠B=2∠C.

9、如图,△ABC中,BD⊥AC于点D,CE⊥AB于点E,且BD,CE交于点F,点G是线段CD上一点,连接AF,GF,若AF=GF,BD=CD.(1)求∠CAF的度数(2)判断线段FG与BC的位置关系,并说明理由.【巩固提升】1.如图,在△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD,CE交于点O,试判断BE,CD,BC的数量关系,并加以证明.2.如图,AD//BC,DC⊥AD,AE平分∠BAD,E是DC的中点.问:AD,BC,AB之间有何关系?并说明理由.3.如图,已知DE=AE,点E在BC上,AE⊥DE,AB⊥BC,DC⊥BC,请问线段AB,CD和线段BC有何大小关系?并说明理由.4.如图,AB∥CD,BE,CE分别是∠ABC和∠BCD的平分线,点E在AD上.求证:BC=AB+CD.

5.如图,在Rt△ABC中,∠C=90°,BC=AC,∠B=∠CAB=45°,AD平分∠BAC交BC于D,求证:AB=AC+CD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论