2024届福建省泉州市泉港一中学、城东中学八上数学期末考试模拟试题含解析_第1页
2024届福建省泉州市泉港一中学、城东中学八上数学期末考试模拟试题含解析_第2页
2024届福建省泉州市泉港一中学、城东中学八上数学期末考试模拟试题含解析_第3页
2024届福建省泉州市泉港一中学、城东中学八上数学期末考试模拟试题含解析_第4页
2024届福建省泉州市泉港一中学、城东中学八上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省泉州市泉港一中学、城东中学八上数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.8的立方根为()A.4 B.﹣4 C.2 D.﹣22.已知A,B两点关于轴对称,若点A坐标为(2,-3),则点B的坐标是()A.(2,-3) B.(-2,3) C.(-2,-3) D.(2,3)3.在△ABC中,已知AB=4cm,BC=9cm,则AC的长可能是()A.5cm B.12cm C.13cm D.16cm4.如图,在△ABC中,AD是∠BAC的平分线,E为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为()A.65°B.70°C.75°D.85°5.如图,在等腰△ABC中,顶角∠A=40°,AB的垂直平分线MN交AC于点D,若AB=m,BC=n,则△DBC的周长是()A.m+2n B.2m+n C.2m+2n D.m+n6.如图,在Rt△ABO中,∠OBA=90°,A(8,8),点C在边AB上,且,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2) B. C. D.7.下列美术字中,不属于轴对称图形的是()A. B. C. D.8.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是()A. B. C. D.9.如图,△ABC与△DEF关于y轴对称,已知A,B,E(2,1),则点D的坐标为()A. B. C. D.10.等边三角形的两个内角的平分线所夹的钝角的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.在实数范围内,把多项式因式分解的结果是________.12.一根木棒能与长为和的两根木棒钉成一个三角形,则这根木棒的长度的取值范围是____________.13.因式分解:2a2﹣8=.14.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件________能用SAS说明△ABC≌△DEF.15.(1)可燃冰是一种新型能源,它的密度很小,1cm3可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是_________________.(2)把多项式可以分解因式为(___________)16.计算的结果为________.17.已知直角三角形的两边长分别为3、1.则第三边长为________.18.如图,某小区有一块长方形的花圃,有人为了避开拐角走捷径,在花圃内走出了一条路AB,已知AC=3m,BC=4m,他们仅仅少走了__________步(假设两步为1米),却伤害了花草.三、解答题(共66分)19.(10分)阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=1.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.20.(6分)计算题:(写出解题步骤,直接写答案不得分)(1)-22++|-2|(2)+÷32+(-1)202021.(6分)先化简:,其中从,,中选一个恰当的数求值.22.(8分)某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为xkm,通过铁路运输和通过公路运输需交总运费y1元和y2元,(1)求y1和y2关于x的表达式.(2)若A地到B地的路程为120km,哪种运输可以节省总运费?23.(8分)观察下列两个数的积(这两个数的十位上的数相同,个位上的数的和等于),你发现结果有什么规律?;;;;(1)设这两个数的十位数字为,个位数字分别为和,请用含和的等式表示你发现的规律;(2)请验证你所发现的规律;(3)利用你发现的规律直接写出下列算式的答案.;;;.24.(8分)已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=20°,∠C=60°.求∠DAE的度数.25.(10分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC=2时,求证:△ABD≌△DCE;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.26.(10分)(1)计算:(2)分解因式:

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据立方根的定义求解即可.【详解】解:∵13=8,∴8的立方根为:1.故选:C.【点睛】本题考查立方根:若一个数的立方等于a,那么这个数叫a的立方根.2、D【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数即可得答案.【详解】∵A,B两点关于轴对称,点A坐标为(2,-3),∴点B坐标为(2,3),故选:D.【点睛】本题考查了关于x轴对称的点的坐标特征,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数.3、B【分析】根据三角形的三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边,求出AC的取值范围,然后逐项判断即可.【详解】由三角形的三边关系定理得因此,只有B选项满足条件故选:B.【点睛】本题考查了三角形的三边关系定理,熟记定理是解题关键.4、A【解析】试题解析:∵EF⊥BC,∠DEF=15°,∴∠ADB=90°-15°=75°.∵∠C=35°,∴∠CAD=75°-35°=40°.∵AD是∠BAC的平分线,∴∠BAC=2∠CAD=80°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°.故选A.5、D【分析】根据垂直平分线的性质和等腰三角形的定义,可得AD=BD,AC=AB=m,进而即可求解.【详解】∵AB的垂直平分线MN交AC于点D,顶角∠A=40°,∴AD=BD,AC=AB=m,∴△DBC的周长=DB+BC+CD=BC+AD+DC=AC+BC=m+n.故选:D.【点睛】本题主要考查等腰三角形的定义以及垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点距离相等,是解题的关键.6、D【分析】根据已知条件得到AB=OB=8,∠AOB=45°,求得BC=6,OD=BD=4,得到D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),求得直线EC的解析式为y=x+4,解方程组即可得到结论.【详解】解:∵在Rt△ABO中,∠OBA=90°,A(8,8),∴AB=OB=8,∠AOB=45°,∵,点D为OB的中点,∴BC=6,OD=BD=4,∴D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+4,解得,,∴P(,),故选:D.【点睛】本题考查了轴对称-最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.7、A【解析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】由轴对称图形的定义定义可知,A不是轴对称图形,B、C、D都是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.8、C【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选C.【点睛】此题考查函数的图象,解题关键在于观察图形9、B【解析】∵△ABC与△DEF关于y轴对称,A(-4,6),∴D(4,6),故选B.10、D【分析】画出图形,根据内角平分线的定义求出∠OBC和∠OCB的度数,再根据三角形的内角和定理求出∠BOC的度数.【详解】如图:∵∠ABC=∠ACB=,BO、CO是两个内角的平分线,∴∠OBC=∠OCB=30,∴在△OBC中,∠BOC=180−30−30=.故选D.【点睛】本题考查了等边三角形的性质,知道等边三角形的每个内角是60度是解题的关键.二、填空题(每小题3分,共24分)11、【分析】首先提取公因式3,得到,再对多项式因式利用平方差公式进行分解,即可得到答案.【详解】==故答案是:【点睛】本题考查了对一个多项式在实数范围内进行因式分解.能够把提取公因式后的多项式因式写成平方差公式的形式是解此题的关键.12、5<<13【分析】设这根木棒的长度为,根据在三角形中,任意两边之和大于第三边,得<4+9=13,任意两边之差小于第三边,得>9-4=5,所以这根木棒的长度为5<<13.【详解】解:这根木棒的长度的取值范围是9-4<<9+4,即5<<13.故答案为5<<13.【点睛】本题考查了三角形得三边关系.在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.13、2(a+2)(a-2).【详解】2a2-8=2(a2-4)=2(a+2)(a-2).故答案为2(a+2)(a-2)【点睛】考点:因式分解.14、AC=DF【分析】根据SAS进行判断即可解答.【详解】添加AC=DF(答案不唯一).证明:因为FB=CE,AC∥DF,所以BF-CF=EC-CF,∠ACB=∠DFE(内错角相等)所以BC=EF.在△ABC和△DEF中,,所以△ABC≌△DEF.【点睛】此题考查全等三角形的判定,平行线的性质,解题关键在于掌握判定定理.15、9.2×10-4【分析】(1)绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定;(2)根据十字相乘法即可求解.【详解】(1)0.00092=9.2×10-4(2)=()故答案为9.2×10-4;.【点睛】此题主要考查科学记数法的表示及因式分解,解题的关键是熟知十字相乘法因式分解的运用.16、【分析】先把分式进行整理,然后进行计算,即可得到答案.【详解】解:;故答案为:.【点睛】本题考查了分式的加减运算,解题的关键是掌握运算法则进行解题.17、4或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;②长为3、3的边都是直角边时:第三边的长为:;∴第三边的长为:或4.考点:3.勾股定理;4.分类思想的应用.18、1【分析】根据勾股定理求得AB的长,再进一步求得少走的步数即可.【详解】解:在Rt△ABC中,AB2=BC2+AC2,则AB=m,∴少走了2×(3+1−5)=1步,故答案为:1.【点睛】此题考查了勾股定理的应用,求出AB的长是解题关键.三、解答题(共66分)19、模型建立:见解析;应用1:2;应用2:(1)Q(1,3),交点坐标为(,0);(2)y=﹣x+2【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,易得:△OKQ≌△QHP,设H(2,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(2,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+2,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=1,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=12,∵BH⊥DC,∴BD==2;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(2,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=2﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(2,2),∴M(2,1),设直线QM的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:,解得:∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=2,∴y=﹣x+2,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+2,故答案为:y=﹣x+2.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.20、(1);(2).【分析】(1)分别按照有理数的乘方,算术平方根以及绝对值的化简方法计算,并合并;(2)分别按照求算术平方根,求立方根乘方及有理数的除法等运算即可.【详解】(1)-22++|-2|==;(2)+÷32+(-1)2020=9-3÷9+1=.【点睛】本题考查了实数的混合运算,牢记相关计算法则,并熟练运用,是解题的关键.21、,2【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把代入计算即可求出值.【详解】解:因为m+1,m-1,m-2所以m,m,m当时,原式.【点睛】此题考查了解分式方程,以及分式的化简求值,熟练掌握运算法则是解本题的关键.22、(1);(2)铁路运输节省总运费.【解析】(1)可根据总运费=每千米的运费×路程+装卸费和手续费,来表示出y1、y2关于x的函数关系式;(2)把路程为120km代入,分别计算y1和y2,比较其大小,然后可判断出哪种运输可以节省总运费.【详解】(1)解:根据题意得:即(2)当x=120时,∵∴铁路运输节省总运费【点睛】本题考查了一次函数的应用,一次函数的应用题常出现于销售、收费、行程等实际问题当中,是常用的解答实际问题的数学模型.23、(1)(10x+y)(10x+10-y)=100x(x+1)+y(10-y);(2)见解析;(3)3016;4221;5625;1.【分析】(1)由题意得出每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,据此可得出结果;

(2)利用整式的运算法则化简等式的左右两边,化简结果相等即可得出结论;(3)根据(1)中的结论计算即可.【详解】解:(1)由已知等式知,每两个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,∴(10x+y)(10x+10-y)=100x(x+1)+y(10-y);(2)∵等式左边=(10x+y)(10x+10-y)=(10x+y)[(10x-y)+10]=(10x+y)(10x-y)+10(10x+y)=100x2-y2+100x+10y;等式右边=100x(x+1)+y(10-y)=100x2+100x+10y-y2=100x2-y2+100x+10y,∴(10x+y)(10x+10-y)=100x(x+1)+y(10-y);(3)根据(1)中的规律可知,3016;4221;5625;1.故答案为:3016;4221;5625;1.【点睛】本题考查了规律型中数字的变化类,根据两数乘积的变化找出变化规律是解题的关键.24、20°【分析】先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的性质可求出∠EAC=∠BAC,而∠DAC=90°﹣∠C,然后利用∠DAE=∠EAC﹣∠DAC进行计算即可.【详解】解:在△ABC中,∵∠B=20°,∠C=60°∴∠BAC=180°﹣∠B﹣∠C=180°﹣20°﹣60°=100°∵AE是的角平分线,∴∠EAC=∠BAC=×100°=50°,∵AD是△ABC的高,∴∠ADC=90°∴∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣60°=30°,∴∠DAE=∠EAC﹣∠DAC=50°﹣30°=20°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和是180°是解答此题的关键.25、(1)25°;小;(2)见解析;(3)当∠BDA=110°或80°时,△ADE是等腰三角形.【分析】(1)根据三角形内角和定理,将已知数值代入即可求出∠BAD,根据点D的运动方向可判定∠BDA的变化情况;(2)假设△ABD≌△DCE,利用全等三角形的对应边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论