岩土工程中英文对照外文翻译文献_第1页
岩土工程中英文对照外文翻译文献_第2页
岩土工程中英文对照外文翻译文献_第3页
岩土工程中英文对照外文翻译文献_第4页
岩土工程中英文对照外文翻译文献_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中英文对照外文翻译(文档含英文原文和中文翻译)原文:SafetyAssuranceforChallengingGeotechnicalCivil

EngineeringConstructionsinUrbanAreasAbstractSafetyisthemostimportantaspectduringdesign,constructionandservicetimeofanystructure,especiallyforchallengingprojectslikehigh-risebuildingsandtunnelsinurbanareas.Ahighleveldesignconsideringthesoil-structureinteraction,basedonaqualifiedsoilinvestigationisrequiredforasafeandoptimiseddesign.Duetothecomplexityofgeotechnicalconstructionsthesafetyassuranceguaranteedbythe4-eye-principleisessential.The4-eye-principleconsistsofanindependentpeerreviewbypubliclycertifiedexpertscombinedwiththeobservationalmethod.Thepaperpresentsthefundamentalaspectsofsafetyassurancebythe4-eye-principle.Theapplicationisexplainedonseveralexamples,asdeepexcavations,complexfoundationsystemsforhigh-risebuildingsandtunnelconstructionsinurbanareas.Theexperiencesmadeintheplanning,designandconstructionphasesareexplainedandfornewinnerurbanprojectsrecommendationsaregiven.Keywords:NaturalAsset;FinancialValue;NeuralNetworkIntroductionAsafetydesignandconstructionofchallengingprojectsinurbanareasisbasedonthefollowingmainaspects:Qualifiedexpertsforplanning,designandconstruction;Interactionbetweenarchitects,structuralengineersandgeotechnicalengineers;Adequatesoilinvestigation;DesignofdeepfoundationsystemsusingtheFiniteElement-Method(FEM)incombinationwithenhancedin-situloadtestsforcalibratingthesoilparametersusedinthenumericalsimulations;Qualityassurancebyanindependentpeerreviewprocessandtheobservationalmethod(4-eye-principle).Thesefactswillbeexplainedbylargeconstructionprojectswhicharelocatedindifficultsoilandgroundwaterconditions.The4-Eye-PrincipleThebasisforsafetyassuranceisthe4-eye-principle.This4-eye-principleisaprocessofanindependentpeerreviewasshowninFigure1.Itconsistsof3parts.Theinvestor,theexpertsforplanninganddesignandtheconstructioncompanybelongtothefirstdivision.Planninganddesignaredoneaccordingtotherequirementsoftheinvestorandallrelevantdocumentstoobtainthebuildingpermissionareprepared.Thebuildingauthoritiesarethesecondpartandareresponsibleforthebuildingpermissionwhichisgiventotheinvestor.Thethirddivisionconsistsofthepubliclycertifiedexperts.Theyareappointedbythebuildingauthoritiesbutworkasindependentexperts.Theyareresponsibleforthetechnicalsupervisionoftheplanning,designandtheconstruction.Inordertoachievethelicenseasapubliclycertifiedexpertforgeotechnicalengineeringbythebuildingauthoritiesintensivestudiesofgeotechnicalengineeringinuniversityandlargeexperiencesingeotechnicalengineeringwithspecialknowledgeaboutthesoil-structureinteractionhavetobeproven.Theindependentpeerreviewbypubliclycertifiedexpertsforgeotechnicalengineeringmakessurethatallinformationincludingtheresultsofthesoilinvestigationconsistingoflaborfieldtestsandtheboundaryconditionsdefinedforthegeotechnicaldesignarecompleteandcorrect.Inthecaseofadefectorcollapsethepubliclycertifiedexpertforgeotechnicalengineeringcanbeinvolvedasanindependentexperttofindoutthereasonsforthedefectordamageandtodevelopaconceptforstabilizationandreconstruction[1].Foralldifficultprojectsanindependentpeerreviewisessentialforthesuccessfulrealizationoftheproject.ObservationalMethodTheobservationalmethodispracticaltoprojectswithdifficultboundaryconditionsforverificationofthedesignduringtheconstructiontimeand,ifnecessary,duringservicetime.ForexampleintheEuropeanStandardEurocode7(EC7)theeffectandtheboundaryconditionsoftheobservationalmethodaredefined.Theapplicationoftheobservationalmethodisrecommendedforthefollowingtypesofconstructionprojects[2]:verycomplicated/complexprojects;projectswithadistinctivesoil-structure-interaction,e.g.mixedshallowanddeepfoundations,retainingwallsfordeepexcavations,CombinedPile-RaftFoundations(CPRFs);projectswithahighandvariablewaterpressure;complexinteractionsituationsconsistingofground,excavationandneighbouringbuildingsandstructures;projectswithpore-waterpressuresreducingthestability;projectsonslopes.Theobservationalmethodisalwaysacombinationofthecommongeotechnicalinvestigationsbeforeandduringtheconstructionphasetogetherwiththetheoreticalmodelingandaplanofcontingencyactions(Figure2).Onlymonitoringtoensurethestabilityandtheserviceabilityofthestructureisnotsufficientand,accordingtothestandardization,notpermittedforthispurpose.Overalltheobservationalmethodisaninstitutionalizedcontrollinginstrumenttoverifythesoilandrockmechanicalmodeling[3,4].Theidentificationofallpotentialfailuremechanismsisessentialfordefiningthemeasureconcept.Theconcepthastobedesignedinthatwaythatallthesemechanismscanbeobserved.Themeasurementsneedtobeofanadequateaccuracytoallowtheidentificationocriticaltendencies.Therequiredaccuracyaswellasthe

boundaryvaluesneedtobeidentifiedwithinthedesignphaseoftheobservationalmethod.Contingencyactionsneedstobeplannedinthedesignphaseoftheobservationalmethodanddependontheductilityofthesystems.Theobservationalmethodmustnotbeseenasapotentialalternativeforacomprehensivesoilinvestigationcampaign.Acomprehensivesoilinvestigationcampaignisinanywayofessentialimportance.Additionallytheobservationalmethodisatoolofqualityassuranceandallowstheverificationoftheparametersandcalculationsappliedinthedesignphase.Theobservationalmethodhelpstoachieveaneconomicandsaveconstruction[5].In-SituLoadTestOnprojectandsiterelatedsoilinvestigationswithcoredrillingsandlaboratoryteststhesoilparametersaredetermined.Laboratorytestsareimportantandessentialfortheinitialdefinitionofsoilmechanicalpropertiesofthesoillayer,butusuallynotsufficientforanentireandrealisticcaptureofthecomplexconditions,causedbytheinteractionofsubsoilandconstruction[6].Inordertoreliablydeterminetheultimatebearingcapacityofpiles,loadtestsneedtobecarriedout[7].Forpileloadtestsoftenveryhighcounterweightsorstrong

anchorsystemsarenecessary.ByusingtheOsterbergmethodhighloadscanbereachedwithoutinstallinganchorsorcounterweights.Hydraulicjacksinducethe

loadinthepileusingthepileitselfpartlyasabutment.Theresultsofthefieldtestsallowacalibrationofthenumericalsimulations.TheprincipleschemeofpileloadtestsisshowninFigure3.ExamplesforEngineeringPractice5.1.ClassicPileFoundationforaHigh-RiseBuildinginFrankfurtClayandLimestoneInthedowntownofFrankfurtamMain,Germany,onaconstructionsiteof17,400m2thehigh-risebuildingproject“PalaisQuartier”hasbeenrealized(Figure4).

Theconstructionwasfinishedin2010.Thecomplexconsistsofseveralstructureswithatotalof180,000m2floorspace,thereof60,000m2underground(Figure5).Theprojectincludesthehistoricbuilding“Thurn-undTaxis-Palais”whosefacadehasbeenpreserved(UnitA).Theofficebuilding(UnitB),whichisthehighestbuildingoftheprojectwitha

heightof136mhas34floorseachwithafloorspaceof1340m2.Thehotelbuilding(UnitC)hasaheightof99mwith24upperfloors.Theretailarea(UnitD)runsalongthetotallengthoftheeasternpartofthesiteandconsistsofeightupperfloorswithatotalheightof43m.Theundergroundparkinggaragewithfivefloorsspansacrossthecompleteprojectarea.Withan8mhighfirstsublevel,partiallywithmezzaninefloor,andfourmoresub-levelsthefoundationdepthresultsto22mbelowgroundlevel.Therebyexcavationbottomisat80mabovesealevel(msl).Atotalof302foundationpiles(diameterupto1.86m,lengthupto27m)reachdowntodepthsof53.2mto70.1m.abovesealeveldependingonthestructuralrequirements.Thepileheadofthe543retainingwallpiles(diameter1.5m,lengthupto38m)werelocatedbetween94.1mand99.6mabovesealevel,thepilebasewasbetween59.8mand73.4mabovesealeveldependingonthestructuralrequirements.Asshowninthesectionalview(Figure6),theupperpartofthepilesisintheFrankfurt

ClayandthebaseofthepilesissetintherockyFrankfurtLimestone.Regardingthelargenumberofpilesandthehighpile

loadsapileloadtesthasbeencarriedoutforoptimizationoftheclassicpilefoundation.Osterberg-Cells(O-Cells)havebeeninstalledintwolevelsinorderto

assesstheinfluenceofpileshaftgroutingonthelimitskinfrictionofthepilesintheFrankfurtLimestone(Figure6).Thetestpilewithatotallengthof12.9mand

adiameterof1.68mconsistofthreesegmentsandhasbeeninstalledintheFrankfurtLimestonelayer31.7mbelowgroundlevel.Theupperpilesegmentabovethe

uppercelllevelandthemiddlepilesegmentbetweenthetwocelllevelscanbetestedindependently.Inthefirstphaseofthetesttheupperpartwasloadedbyusingthe

middleandthelowerpartasabutment.Alimitof24MNcouldbereached(Figure7).Theuppersegmentwasliftedabout1.5cm,thesettlementofthemiddleand

lowerpartwas1.0cm.Themobilizedshaftfrictionwasabout830kN/m2.Subsequentlytheupperpilesegmentwasuncoupledbydischargingtheuppercelllevel.Inthesecondtestphasethemiddlepilesegmentwasloadedbyusingthe

lowersegmentasabutment.Thelimitloadofthemiddlesegmentwithshaftgroutingwas27.5MN(Figure7).Theskinfrictionwas1040kN/m2,thismeans24%higherthanwithoutshaftgrouting.BasedontheresultsofthepileloadtestusingO-Cellsthemajorityofthe290foundationpilesweremadebyapplyingshaftgrouting.Due

topileloadtestthetotallengthofwasreducedsignificantly.5.2.CPRFforaHigh-RiseBuildinginClayMarlInthescopeoftheprojectMiraxPlazainKiev,Ukraine,2high-risebuildings,eachofthem192m(46storeys)high,ashoppingandentertainmentmallandanundergroundparkingareunderconstruction(Figure8).Theareaoftheprojectisabout294,000m2andcutsa30mhighnaturalslope.Thegeotechnicalinvestigationshavebeenexecuted70mdeep.Thesoilconditionsattheconstructionsiteareasfollows:filltoadepthof2mto3mquaternarysiltysandandsandysiltwithathicknessof5mto10mtertiarysiltandsand(CharkowandPoltawformation)withathicknessof0mto24mtertiaryclayeysiltandclaymarloftheKievandButschakformationwithathicknessofabout20mtertiaryfinesandoftheButschakformationuptotheinvestigationdepthThegroundwaterlevelisinadepthofabout2mbelowthegroundsurface.ThesoilconditionsandacrosssectionoftheprojectareshowninFigure9.Forverificationoftheshaftandbaseresistanceofthedeepfoundationelementsandforcalibrationofthenumericalsimulationspileloadtestshavebeencarriedoutontheconstructionyard.Thepileshadadiameterof0.82mandalengthofabout10mto44m.UsingtheresultsoftheloadteststhebackanalysisforverificationoftheFEMsimulationswasdone.Thesoilpropertiesinaccordancewiththeresultsofthebackanalysiswerepartly3timeshigherthanindicatedinthegeotechnicalreport.Figure10showstheresultsoftheloadtestNo.2andthenumericalbackanalysis.Measurementandcalculationshowagoodaccordance.Theobtainedresultsofthepileloadtestsandoftheexecutedbackanalysiswereappliedin3-dimensionalFEM-simulationsofthefoundationforTowerA,takingadvantageofthesymmetryofthefootprintofthebuilding.TheoverallloadoftheTowerAisabout2200MNandtheareaofthefoundationabout2000m2(Figure

11).ThefoundationdesignconsidersaCPRFwith64barretteswith33mlengthandacrosssectionof2.8m×0.8m.Theraftof3mthicknessislocatedinKievClayMarlatabout10mdepthbelowthegroundsurface.ThebarrettesarepenetratingthelayerofKievClayMarlreachingtheButschakSands.Thecalculatedloadsonthebarretteswereintherangeof22.1MNto44.5MN.Theloadontheouterbarretteswasabout41.2MNto44.5MNwhichsignificantlyexceedstheloadsontheinnerbarretteswiththemaximumvalueof30.7MN.ThisbehavioristypicalforaCPRF.Theouterdeepfoundationelementstakemoreloadsbecauseoftheirhigherstiffnessduetothehighervolumeoftheactivatedsoil.TheCPRFcoefficientis.Maximumsettlementsofabout12cmwerecalculatedduetothesettlement-relevantloadof85%ofthetotaldesignload.Thepressureunderthefoundationraftiscalculatedinthemostareasnotexceeding200

kN/m2,attheraftedgethepressurereaches400kN/m2.Thecalculatedbasepressureoftheouterbarretteshasanaverageof5100kN/m2andforinnerbarrettesanaverageof4130kN/m2.Themobilizedshaftresistanceincreaseswiththedepthreaching180kN/m2forouterbarrettesand150kN/m2forinnerbarrettes.DuringtheconstructionofMiraxPlazatheobservationalmethodaccordingtoEC7isapplied.Especiallythedistributionoftheloadsbetweenthebarrettesandthe

raftismonitored.Forthisreason3earthpressuredeviceswereinstalledundertheraftand2barrettes(mostloadedouterbarretteandaverageloadedinnerbarrette)were

instrumentedoverthelength.InthescopeoftheprojectMiraxPlazathenewallowableshaftresistanceandbaseresistanceweredefinedfortypicalsoillayersinKiev.ThisuniqueexperiencewillbeusedfortheskyscrapersofnewgenerationinUkraine.TheCPRFofthehigh-risebuildingprojectMiraxPlazarepresentsthefirstauthorizedCPRFintheUkraine.UsingtheadvancedoptimizationapproachesandtakingadvantageofthepositiveeffectofCPRFthenumberofbarrettescouldbereducedfrom120barretteswith40mlengthto64barretteswith33mlength.Thefoundationoptimizationleadstoconsiderabledecreaseoftheutilizedresources(cement,aggregates,water,energyetc.)andcostsavingsofabout3.3MillionUS$.译文:安全保证岩土公民发起挑战工程建设在城市地区摘要安全是最重要的方面在设计、施工和服务时间的任何结构,特别是对具有挑战性的项目,如高层建筑和隧道在城市地区。高水平的设计考虑到土壤结构相互作用,基于一个合格的土壤调查需要一个安全的和优化设计。由于岩土结构的复杂性4眼原则担保的安全保障是至关重要的。4眼原则由一个独立的同行审查通过公开认证专家结合观察法。这篇论文介绍了由4眼原则安全保证的基本方面。应用程序解释几个例子,深度挖掘,复杂的高层建筑基础系统和隧道结构在城市地区。经验的规划、设计和施工阶段进行解释和新城市内部项目的建议。关键词:自然资产,金融价值;神经网络1.介绍一个安全的设计和施工具有挑战性的项目在城市地区是基于以下主要方面:合格的专家对规划、设计和施工;互动建筑师、结构工程师和岩土工程师;充足的土壤调查;深基础系统的设计使用的组合使用有限元法(FEM)结合增强原位校准土壤参数的负载测试中使用的数值模拟;质量保证由一个独立的同行审查过程和观察法(4眼原则)。这些事实将被解释为大型建筑项目位于艰难的土壤和地下水环境。2四眼原则安全保证是4眼原则的基础。这4眼原则是一个独立的同行审查的过程如图1所示。它由3部分组成。投资者、专家规划设计和建筑公司属于第一次分裂。规划和设计都是根据投资者的要求和所有相关文件准备获得建筑许可。建筑部门,负责第二部分的建筑许可给投资者。第三部分包括公开认证专家。他们由建设部门任命,但独立专家。他们负责技术监督的规划、设计和建设。为了实现许可作为岩土工程的公开认证专家构建当局强化的研究在大学岩土工程和大型岩土工程的经验和专门知识的土壤结构交互必须证明。独立的同行审查由公开认证专家为岩土工程确保所有信息包括土壤调查的结果组成的劳动现场测试和岩土设计的边界条件定义是完整和正确的。在缺陷或崩溃的情况下公开认证专家可以涉及岩土工程作为一个独立的专家来找出缺陷或损坏的原因,为稳定和开发一个概念重建[1]。所有困难的项目一个独立的同行审查项目的成功实现是至关重要的。3。观察法观察法是实际项目与困难的边界条件的验证设计在施工期间,如果有必要,在服务时间。例如在欧洲标准欧洲规范7(EC7)和边界条件的影响的观测方法定义。观察法的应用建议以下类型的建设项目[2]:非常复杂的/复杂的项目;独特的土结构相互作用的项目,例如混合浅和深基础、挡土墙的深度发掘,结合桩筏基础(CPRFs);和变量水压高的项目;组成的复杂的相互作用情况下,挖掘和邻近建筑物和结构;项目与孔隙水压力减少稳定;项目在山坡上。观察法总是结合常见的岩土调查之前和在构建阶段的理论建模和应急行动计划(图2),只有监控以确保结构的稳定和服务能力是不够的,根据标准化,不允许。整体观察法是一个制度化的控制仪器验证土壤和岩石力学建模(3、4)。识别所有潜在的失败机制基本定义度量的概念。概念设计那样,所有这些机制都可以观察到。测量需要帮上一个适当的精度允许识别方向倾向。所需的准确性以及边界值需要在设计阶段确定的观测方法。应急行动计划需要在设计阶段的观测方法,取决于系统的延展性。观察法不得被视为一个潜在的选择一个全面的土壤调查活动。综合土壤调查活动以任何方式基本的重要性。此外观察法是质量保证的工具,允许参数的验证和计算应用在设计阶段。观测方法有助于实现经济和节约建设[5]。4。原位载荷试验在项目和网站相关的土壤调查与核心运转和实验室检测参数确定。实验室检测是重要的和必不可少的初始定义的土壤土层的力学性能,但通常不能满足整个和现实的捕捉复杂的条件下,由于底土和建筑的相互作用[6]。为了可靠地确定桩的极限承载力,负载测试需要进行[7]。Forpile负载测试往往非常高的柜台重量或强锚定系统是必要的。用奥斯特伯格方法高负载可以达到没有安装锚或计数器的重量。液压千斤顶诱导负载在桥台桩使用桩本身部分。现场测试的结果允许校正的数值模拟。负载测试桩的原理图如图3所示。5.工程实践的示例5.1.经典的高层建筑桩基础在法兰克福粘土和石灰岩德国法兰克福市中心的建筑位置的17400平方米的高层建筑项目“PalaisQuartier”已经意识到(图4)。建设于2010年完成。复杂的由几种结构共有180000平方米建筑面积,有60000平方米的地下(图5)。项目包括历史建筑”Thurn-undTaxis-Palais”的外观已经保存(单元)。办公大楼(单位B),这是最高的建筑项目高度136米34层每层建筑面积1340平方米。酒店建筑(单位C)与24楼上有99米的高度。零售区域的总长度(单位D)沿着东部的网站,由八楼上共43米的高度。五层的地

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论