




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省龙岩五中学2024届数学八上期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列各式中,能运用“平方差公式”进行因式分解的是()A. B. C. D.2.已知△ABC中,AB=8,BC=5,那么边AC的长可能是下列哪个数()A.15 B.12 C.3 D.23.在下列四个标志图案中,轴对称图形是()A. B. C. D.4.下列选项中,可以用来证明命题“若,则”是假命题的反例的是()A. B. C. D.5.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且PE=3,AP=5,点F在边AB上运动,当运动到某一位置时△FAP面积恰好是△EAP面积的2倍,则此时AF的长是()A.10 B.8 C.6 D.46.下列语句是命题的是()(1)两点之间,线段最短;(2)如果两个角的和是90度,那么这两个角互余.(3)请画出两条互相平行的直线;(4)过直线外一点作已知直线的垂线;A.(1)(2) B.(3)(4) C.(2)(3) D.(1)(4)7.下列因式分解结果正确的是()A.2a2﹣4a=a(2a﹣4) B.C.2x3y﹣3x2y2+x2y=x2y(2x﹣3y) D.x2+y2=(x+y)28.已知非等腰三角形的两边长分别是2cm和9cm,如果第三边的长为整数,那么第三边的长为()A.8cm或10cmB.8cm或9cmC.8cmD.10cm9.在解分式方程时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是()A.数形结合 B.转化思想 C.模型思想 D.特殊到一般10.若、、为的三边长,且满足,则的值可以为()A.2 B.5 C.6 D.811.在平面直角坐标系中,将点P(1,4)向左平移3个单位长度得到点Q,则点Q所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.方程组的解是()A. B. C. D.二、填空题(每题4分,共24分)13.当x_________时,分式分式有意义14.若三角形三个内角的度数之比为,最短的边长是,则其最长的边的长是__________.15.根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为_____万元.16.分解因式:ax2+2ax+a=____________.17.将一副三角板如图叠放,则图中∠AOB的度数为_____.18.已知x=﹣2,y=1是方程mx+2y=6的一个解,则m的值为_____.三、解答题(共78分)19.(8分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?20.(8分)如图(1)AC⊥AB,BD⊥AB,AB=12cm,AC=BD=8cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,请说明理由;(2)在(1)的条件下,判断此时线段PC和线段PQ的位置关系,并证明;(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.21.(8分)已知方程组的解是,则方程组的解是_________.22.(10分)对下列代数式分解因式(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.23.(10分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。设购进A种树苗x棵,购买两种树苗的总费用为w元。(1)写出w(元)关于x(棵)的函数关系式;(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。24.(10分)如图,在中,,,平分,延长至,使.(1)求证:;(2)连接,试判断的形状,并说明理由.25.(12分)因式分解:(1)(2)26.如图,,点、分别在、上运动(不与点重合).(1)如图1,是的平分线,的反方向延长线与的平分线交于点.①若,则为多少度?请说明理由.②猜想:的度数是否随、的移动发生变化?请说明理由.(2)如图2,若,,则的大小为度(直接写出结果);(3)若将“”改为“()”,且,,其余条件不变,则的大小为度(用含、的代数式直接表示出米).
参考答案一、选择题(每题4分,共48分)1、B【分析】根据平方差公式的特点:①两项式;②两个数的平方差,对每个选项进行判断即可.【详解】A.,提公因式进行因式分解,故A选项不符合题意B.,利用平方差公式进行因式分解,故B选项符合题意C.=(x-2),运用完全平方公式进行因式分解,故C选项不符合题意D.,不能因式分解,故D选项不符合题意故选:B【点睛】本题考查了用平方差公式进行因式分解的知识,解题的关键是掌握平方差公式特点.2、B【解析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【详解】解:根据三角形的三边关系,8−5<AC<8+5,即3<AC<13,符合条件的只有12,故选:B.【点睛】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.3、B【解析】沿着一条直线折叠后两侧能够完全重合的图形是轴对称图形,根据定义判断即可.【详解】A不是轴对称图形,不符合题意;B是轴对称图形,符合题意;C不是轴对称图形,不符合题意;D不是轴对称图形,不符合题意;故选:B.【点睛】本题考查轴对称图形的识别,熟记定义是解题的关键.4、D【分析】根据题意,将选项中a的值代入命题中使得命题不成立即可判断原命题是假命题.【详解】选项中A,B,C都满足原命题,D选项与原命题的条件相符但与结论相悖,则是原命题作为假命题的反例,故选:D.【点睛】本题主要考查了命题的相关知识,熟练掌握真假命题的判断是解决本题的关键.5、B【分析】过P作PM⊥AB于M,根据角平分线性质求出PM=3,根据已知得出关于AF的方程,求出方程的解即可.【详解】过P作PM⊥AB于M,∵点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且PE=3,∴PM=PE=3,∵AP=5,∴AE=4,∵△FAP面积恰好是△EAP面积的2倍,∴×AF×3=2××4×3,∴AF=8,故选B.考点:角平分线的性质.6、A【分析】判断一件事情的语句叫命题,命题都由题设和结论两部分组成,依此对四个小题进行逐一分析即可;【详解】(1)两点之间,线段最短符合命题定义,正确;(2)如果两个角的和是90度,那么这两个角互余,符合命题定义,正确.(3)请画出两条互相平行的直线只是做了陈述,不是命题,错误;(4)过直线外一点作已知直线的垂线没有做出判断,不是命题,错误,故选:A.【点睛】本题考查了命题的概念:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.注意命题是一个能够判断真假的陈述句.7、B【分析】根据因式分解的方法对各式进行判断即可得出答案.【详解】A、2a2-4a=2a(a-2),故此选项错误;B、-a2+2ab-b2=-(a-b)2,此选项正确;C、2x3y-3x2y2+x2y=x2y(2x-3y+1),故此选项错误;D、x2+y2无法分解因式,故此选项错误;故选B.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练掌握乘法公式是解题关键.8、A【解析】根据三角形的三边关系求得第三边的取值范围,再根据第三边为整数即可得出答案.【详解】解:根据三角形的三边关系,得
7cm<第三边<11cm,
故第三边为8,1,10,
又∵三角形为非等腰三角形,
∴第三边≠1.
故选:A.【点睛】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.9、B【详解】解:在解分式方程时,我们第一步通常是去分母,即方程两边同乘以最简公分母(x﹣1),把分式方程变形为整式方程求解.解决这个问题的方法用到的数学思想是转化思想,故选B.【点睛】本题考查解分式方程;最简公分母.10、B【分析】根据非负数的性质列方程求出a、b的值,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出c的取值范围,然后解答即可.【详解】解:由题意得,,,
解得:,,
∵4−2=2,4+2=6,
∴,
∴c的值可以为1.
故选:B.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系:三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.11、B【分析】向左平移,纵坐标不变,横坐标减3即可.【详解】解:平移后点Q的坐标为(1﹣3,4),即Q(﹣2,4),∴点Q所在的象限是第二象限,故选择:B.【点睛】本题考查点在象限问题,关键上掌握平移特征,左右平移纵坐标不变,横坐标减去或加上平移距离.12、C【分析】直接利用代入法解方程组即可得解【详解】解:,由①得:③,将③代入②得:,解得:,将代入③得:故方程组的解为:,故选择:C.【点睛】本题主要考查二元一次方程组的解及解二元一次方程,解二元一次方程有两种方法:代入法和加减法,根据方程组的特点灵活选择.二、填空题(每题4分,共24分)13、≠-1【分析】分式有意义使分母不为0即可.【详解】分式有意义x+1≠0,x≠-1.故答案为:≠-1.【点睛】本题考查分式有意义的条件问题,掌握分式有意义的知识分母不为零,会用分式有意义列不等式,会解不等式是关键.14、10cm【分析】根据三角形内角和定理可求得三个角的度数分别为30°,60°,90°,再根据30°角所对的直角边是斜边的一半即可求解.【详解】∵三角形三个内角的度数之比为,∴三个角的度数分别为60°,30°,90°,∵最短的边长是5cm,∴最长的边的长为10cm.故答案为:10cm.【点睛】此题主要考查含30度角的直角三角形的性质及三角形内角和定理的综合运用.15、1【分析】用二季度的营业额÷二季度所占的百分比即可得到结论.【详解】由扇形图可以看出二季度所占的百分比为,所以该商场全年的营业额为万元,答:该商场全年的营业额为1万元.故答案为1.【点睛】本题考查扇形统计图,正确的理解扇形统计图中的信息是解题的关键.16、a(x+1)1【解析】ax1+1ax+a=a(x1+1x+1)=a(x+1)1.17、【分析】根据三角形的外角的性质计算即可.【详解】由三角形的外角的性质可知,∠AOB=∠CAO-∠B=60°-45°=15°,
故答案为:15°.【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.18、﹣2【分析】把x、y的值代入方程可得关于m的一元一次方程,解方程求出m的值即可得答案.【详解】把x=﹣2,y=1代入方程得:﹣2m+2=6,移项合并得:﹣2m=4,解得:m=﹣2,故答案为:﹣2【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.三、解答题(共78分)19、(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【分析】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【详解】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意,得:.解得:,经检验,是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,(天),答:甲乙两队合作完成该工程需要18天.【点睛】本题考查分式方程的应用,理解题意,根据等量关系列出方程是解题的关键.20、(1)△ACP与△BPQ全等,理由详见解析;(2)PC⊥PQ,证明详见解析;(3)当t=2s,x=2cm/s或t=3s,x=cm/s时,△ACP与△BPQ全等.【分析】(1)利用SAS定理证明△ACP≌△BPQ;(2)根据全等三角形的性质判断线段PC和线段PQ的位置关系;(3)分△ACP≌△BPQ,△ACP≌△BQP两种情况,根据全等三角形的性质列式计算.【详解】(1)△ACP与△BPQ全等,理由如下:当t=2时,AP=BQ=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥PQ,证明:∵△ACP≌△BPQ,∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(3)①若△ACP≌△BPQ,则AC=BP,AP=BQ,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQP,则AC=BQ,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△ACP与△BPQ全等.【点睛】本题属于三角形专题,考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.21、【解析】试题分析:根据题意,把方程组的解代入,可得,把①和②分别乘以5可得,和所求方程组比较,可知,因此方程组的解为.22、(1)n(m﹣2)(n+1);(2)(x﹣2)2.【分析】(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.【详解】(1)n2(m﹣2)﹣n(2﹣m),=n2(m﹣2)+n(m﹣2),=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1,=x2﹣4x+4,=(x﹣2)2.【点睛】此题考查提公因式法和公式法进行因式分解,(1)整理出公因式的形式是解题的关键;(2)先利用多项式的乘法整理成一般多项式的形式是利用公式的关键,也是难点.23、(1)w=20x+1020;(2)费用最省方案为:购进A种树苗9棵,B种树苗8棵,所需费用为1200元.【分析】(1)根据题意可得等量关系:费用W=A种树苗a棵的费用+B种树苗(17−a)棵的费用可得函数关系式;(2)根据一次函数的性质与不等式的性质得到当x=9时,w有最小值.【详解】解:(1)w=80x+60(17-x)=20x+1020(2)∵k=20>0,w随着x的增大而增大又∵17-x<x,解得x>8.5,∴8.5<x<17,且x为整数∴当x=9时,w有最小值20×9+1020=1200(元)答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,所需费用为1200元.【点睛】此题主要考查了一次函数和一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系与不等关系,列出函数关系式进行求解.24、(1)见解析;(2)等边三角形,理由见解析.【分析】(1)由直角三角形的性质和角平分线得出∠DAB=∠ABC,得出DA=DB,再由线段垂直平分线的性质得出DE=DA,即可得出结论;(2)由线段垂直平分线的性质得出BA=BE,再由∠CAB=60°,即可得出△ABE是等边三角形.【详解】解:(1)证明:∵∠ACB=90°,∠ABC=30°,∴BC⊥AE,∠CAB=60°,∵AD平分∠CAB,∴∠DAB=∠CAB=30°=∠ABC,∴DA=DB,∵CE=AC,∴BC是线段AE的垂直平分线,∴DE=DA,∴DE=DB;(2)△ABE是等边三角形;理由如下:∵BC是线段AE的垂直平分线,∴BA=BE,即△ABE是等腰三角形,又∵∠CAB=60°,∴△ABE是等边三角形.【点睛】本题考查了等边三角形的判定方法、线段垂直平分线的性质、等腰三角形的判定等知识.解题的关键是掌握角平分线的性质以及等边三角形的性质,此题难度不大.25、(1)(2)【解析】试题分析:(1)直接利用平方差公式因式分解即可;(2)提公因式a后再利用完全平方公式因式分解即可.试题解析:(1);(2).26、(1)①4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 刀具验收管理办法
- 分级规划管理办法
- 刑警风险管理办法
- 创新研究管理办法
- 制剂认证管理办法
- 制度修订管理办法
- 功德箱管理办法
- 北京养殖管理办法
- 心理辅导与提升学习成效的关联性研究
- 教育心理学在小学生心理健康中的重要性研究
- 关于手机网络安全教育课件
- 武汉仓储行业趋势分析
- 机械制造企业安全生产标准化达标所需文件和资料全
- 医务人员服务态度差存在问题及整改措施
- 青海国肽生物科技有限公司牦牛骨提取小分子胶原蛋白肽生产项目及国肽大厦建设项目环评报告
- 中国医师节ppt课件(图文)
- 管理服务北京市地方标准-住宅物业服务标准
- T-BJWA 005-2022 水质17O-NMR半高峰宽测定 核磁共振法
- GA/T 1369-2016人员密集场所消防安全评估导则
- 如何做好财务主管
- 研究生学术道德与学术规范课件
评论
0/150
提交评论