版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳百合外国语学校2023-2024学年数学八上期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5 B.6 C.7 D.82.解分式方程时,去分母变形正确的是()A. B.C. D.3.如图①是一直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将图②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.cm C.cm D.3cm4.将多项式分解因式,结果正确的是()A. B.C. D.5.计算:的结果是()A. B. C. D.6.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,则∠C为()A.25° B.35° C.40° D.50°7.下列各式从左到右的变形中,是因式分解的是()A.3x+2x﹣1=5x﹣1 B.(3a+2b)(3a﹣2b)=9a2﹣4b2C.x2+x=x2(1+) D.2x2﹣8y2=2(x+2y)(x﹣2y)8.校乒乓球队员的年龄分布如下表所示:年龄(岁)人数对于不同的,下列关于年龄的统计量不会发生改变的是()A.众数,中位数 B.众数,方差 C.平均数,中位数 D.平均数,方差9.估计的运算结果应在哪个两个连续自然数之间()A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣410.如图,在等边△ABC中,AB=15,BD=6,BE=3,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是()A.8 B.10 C. D.1211.已知x2-2kx+64是完全平方式,则常数k的值为()A.8 B.±8 C.16 D.±1612.若,则的值是()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.若分式在实数范围内有意义,则x的取值范围是______.14.命题“若a2>b2则a>b”是_____命题(填“真”或“假”),它的逆命题是_____.15.如图,△ABC中,AB=4cm,BC=AC=5cm,BD,CD分别平分∠ABC,∠ACB,点D到AC的距离是1cm,则△ABC的面积是_____.16.一组数据3,4,6,7,x的平均数为6,则这组数据的方差为_____.17.如图,在中,,点为边上的一点,,,交于点,交于点.若,图中阴影部分的面积为4,,则的周长为______.18.16的平方根是.三、解答题(共78分)19.(8分)(1)因式分解:﹣x1+x﹣;(1)解分式方程:=1.20.(8分)计算:(1)(2)先化简,再求值:[(2m+n)(2m-n)+(m+n)2-2(2m2-mn)]÷(-4m),其中m=1,n=.21.(8分)(1)计算:;(2)因式分解:.22.(10分)有一家糖果加工厂,它们要对一款奶糖进行包装,要求每袋净含量为100g.现使用甲、乙两种包装机同时包装100g的糖果,从中各抽出10袋,测得实际质量(g)如下:甲:101,102,99,100,98,103,100,98,100,99乙:100,101,100,98,101,97,100,98,103,102(1)分别计算两组数据的平均数、众数、中位数;(2)要想包装机包装奶糖质量比较稳定,你认为选择哪种包装机比较适合?简述理由.23.(10分)2019年11月20日-23日,首届世界大会在北京举行.某校的学生开展对于知晓情况的问卷调查,问卷调查的结果分为、、、四类,其中类表示“非常了解”,类表示“比较了解”,类表示“基本了解”,类表示“不太了解”,并把调查结果绘制成如图所示的两个统计图表(不完整).根据上述信息,解答下列问题:(1)这次一共调查了多少人;(2)求“类”在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整.24.(10分)(1)如图①,OP是∠MON的平分线,点A为OP上一点,请你作一个∠BAC,B、C分别在OM、ON上,且使AO平分∠BAC(保留作图痕迹);(2)如图②,在△ABC中,∠ACB是直角,∠B=60°,△ABC的平分线AD,CE相交于点F,请你判断FE与FD之间的数量关系(可类比(1)中的方法);(3)如图③,在△ABC中,如果∠ACB≠90°,而(2)中的其他条件不变,请问(2)中所得的结论是否仍然成立?若成立,请证明,若不成立,说明理由.25.(12分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.
(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________米/分钟;(2)求出线段AB所表示的函数表达式.26.(习题再现)课本中有这样一道题目:如图,在四边形中,分别是的中点,.求证:.(不用证明)(习题变式)(1)如图,在“习题再现”的条件下,延长与交于点,与交于点,求证:.(2)如图,在中,,点在上,,分别是的中点,连接并延长,交的延长线于点,连接,,求证:.
参考答案一、选择题(每题4分,共48分)1、D【分析】要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.【详解】①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上.∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选D.【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解决本题的关键.2、C【分析】分式方程去分母转化为整式方程,即可得到结果.【详解】解:去分母得:1-x=-1-3(x-2),
故选:C.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.3、A【解析】因为在直角三角形中,∠A=30°,BC=4,故∠CBA=60°,根据折叠的性质得:故得:DB=,,根据折叠的性质得:,故△EDB为直角三角形,又因为,故DE=DBtan30°=cm,故答案选A.4、D【解析】先提取公因式x,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a-b)(a+b).解:x3-xy2=x(x2-y2)=x(x+y)(x-y),故选D.本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.5、C【分析】根据积的乘方的运算法则和单项式乘除法的运算法则计算即可.【详解】故选:C.【点睛】本题主要考查积的乘方和单项式的乘除法,掌握积的乘方的运算法则和单项式乘除法的运算法则是解题的关键.6、B【解析】解:∵AB=AD,∴∠B=∠ADB,由∠BAD=40°得∠B=∠ADB=70°,∵AD=DC,∴∠C=∠DAC,∴∠C=∠ADB=35°.故选B.7、D【解析】A.没把一个多项式转化成几个整式积的形式,故A错误;B.是整式的乘法,故B错误;C.没把一个多项式转化成几个整式积的形式,故C错误;D.把一个多项式转化成几个整式积的形式,故D正确;故选D.8、A【分析】先求出总人数,再确定不变的量即可.【详解】人,一共有个人,关于年龄的统计量中,有个人岁,∴众数是15,中位数是15,对于不同的,统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查的是学生对中位数和众数的定义等知识的掌握情况及灵活运用能力,解题的关键在于能够熟知中位数和众数的定义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.9、C【解析】根据二次根式的性质,可化简得=﹣3=﹣2,然后根据二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之间.故选C.点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.10、D【分析】首先利用等边三角形的性质和含30°直角三角形的运用,判定△DPE≌△FDH,△DF2Q≌△ADE,然后利用全等三角形的性质,得出点F运动的路径长.【详解】∵△ABC为等边三角形,∴∠B=60°,过D点作DE′⊥AB,过点F作FH⊥BC于H,如图所示:则BE′=BD=3,∴点E′与点E重合,∴∠BDE=30°,DE=BE=3,∵△DPF为等边三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,在△DPE和△FDH中,,∴△DPE≌△FDH(AAS),∴FH=DE=3,∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为3,当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则四边形DF1F2Q是矩形,∵∠BDE=30°,∠ADF2=60°,∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,∵∠ADE+∠DAE=90°,∴∠F2DQ=∠DAE,在△DF2Q和△ADE中,,∴△DF2Q≌△ADE(AAS),∴DQ=AE=AB﹣BE=15﹣3=12,∴F1F2=DQ=12,∴当点P从点E运动到点A时,点F运动的路径长为12,故选:D.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是作好辅助线.11、B【解析】∵x2-2kx+64是一个完全平方式,∴x2-2kx+64=(x+8)2或x2-2kx+64=(k−8)2∴k=±8.故选B.12、B【分析】根据比例的性质,可用x表示y、z,根据分式的性质,可得答案.【详解】设=k,则x=2k,y=7k,z=5k代入原式原式==故答案为:2.【点睛】本题考查了比例的性质,解题的关键是利用比例的性质,化简求值.二、填空题(每题4分,共24分)13、x≠-2【解析】根据分式有意义的条件进行求解即可.【详解】由题意得:x+2≠0,解得:x≠-2,故答案为:x≠-2.【点睛】本题考查了分式有意义的条件,熟知“分式的分母不为0”时分式有意义是解题的关键.14、假若a>b则a1>b1【分析】a1大于b1则a不一定大于b,所以该命题是假命题,它的逆命题是“若a>b则a1>b1”.【详解】①当a=-1,b=1时,满足a1>b1,但不满足a>b,所以是假命题;②命题“若a1>b1则a>b”的逆命题是若“a>b则a1>b1”;故答案为:假;若a>b则a1>b1.【点睛】本题主要考查判断命题真假、逆命题的概念以及平方的计算,熟记相关概念取特殊值代入是解题关键.15、1【分析】根据垂线的定义,分别过D点作AB、AC、BC的垂线,然后根据角平分线的性质,可得DH、DE、DF长为1,最后运用三角形的面积公式分别求出三个三角形的面积,相加即可得出答案.【详解】解:如图,作DE⊥AB于E,DF⊥BC于F,DH⊥AC于H,连接AD,则DH=1,∵BD,CD分别平分∠ABC,∠ACB,∴DF=DH=1,DE=DF=1,∴S△ABC=S△ABD+S△BCD+S△ACD=×4×1+×5×1+×5×1=1.故答案为1.【点睛】本题主要考察了垂线的定义以及角平分线的性质,解题的关键是正确作出辅助线,灵活运用角平分的性质.16、1【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.【详解】解:数据3,4,1,7,的平均数为1,,解得:,;故答案为:1.【点睛】本题考查方差的定义:一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、【分析】设,,结合题意得,,再根据交于点,交于点,从而得到;通过证明;得,从而得四边形面积;根据勾股定理,得,即可完成求解.【详解】设,∵,∴,∵交于点,交于点∴∴∴∵∴∴∴四边形面积∵阴影面积∴∴∵∴∴∵∴∴的周长为:故答案为:.【点睛】本题考查了全等三角形、勾股定理、算术平方根的知识;解题的关键是熟练掌握全等三角形、勾股定理、算术平方根的性质,从而完成求解.18、±1.【详解】由(±1)2=16,可得16的平方根是±1.三、解答题(共78分)19、(1)﹣(x﹣)1;(1)x=2.【分析】(1)原式提取﹣1,再利用完全平方公式分解即可;(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)原式=(1)去分母得:x﹣8+3=1x﹣14,解得:x=2,经检验x=2是分式方程的解.【点睛】本题主要考查因式分解和解分式方程,掌握因式分解和解分式方程的方法是解题的关键.20、(1)-27a10;(2),【解析】(1)根据积的乘方、单项式乘单项式以及整式除法法则计算即可;(2)根据整式的混合运算法则把原式化简,代入计算即可.【详解】(1)原式==-27a11÷a=-27a10;(2)原式=[4m2-n2+(m2+2mn+n2)-(4m2-2mn)]÷(-4m)=(4m2-n2+m2+2mn+n2-4m2+2mn)÷(-4m)=(m2+4mn)÷(-4m)=当m=1,n=时,原式==.【点睛】本题考查了整式的混合运算,掌握平方差公式、完全平方公式、合并同类项法则是解题的关键21、(1)12xy+10y2;(2)x(x+3)(x-3).【分析】(1)根据题意直接利用完全平方和公式以及平方差公式化简,进而合并得出答案;(2)由题意首先提取公因式x,再利用平方差公式分解因式即可.【详解】解:(1)(2x+3y)2-(2x+y)(2x-y)=(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2(2)x3-9x=x(x2-9)=x(x+3)(x-3)【点睛】本题主要考查整式的乘法以及提取公因式法、公式法分解因式,正确应用公式是解题关键.22、(1)甲:平均数为100、众数为100、中位数为100;乙:平均数为100、中位数是100、乙的众数是100;(2)选择甲种包装机比较合适.【分析】(1)根据平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数进行计算即可.(2)利用方差公式分别计算出甲、乙的方差,然后可得答案.【详解】解:(1)甲的平均数为:(101+102+99+100+98+103+100+98+100+99)=100;乙的平均数为:(100+101+100+98+101+97+100+98+103+102)=100;甲中数据从小到大排列为:98,98,99,99,100,100,100,101,102,103故甲的中位数是:100,甲的众数是100,乙中数据从小到大排列为:97,98,98,100,100,100,101,101,102,103故乙的中位数是:100,乙的众数是100;(2)甲的方差为:=[(101﹣100)2+(102﹣100)2+(99﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(100﹣100)2+(98﹣100)2+(100﹣100)2+(98﹣100)2)=2.4;乙的方差为:=[(100﹣100)2+(101﹣100)2+(100﹣100)2+(98﹣100)2+(101﹣100)2+(97﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(102﹣100)2]=3.2,∵<,∴选择甲种包装机比较合适.【点睛】此题主要考查了中位数、平均数、众数以及方差,关键是掌握三数的计算方法,掌握方差公式.23、(1)100;(2)36°;(3)详见解析.【分析】(1)用“B”类的人数除以其所占的比例即可;(2)用360°乘“A”类所占的比例即可;(3)求“D”类的人数,补全统计图即可.”【详解】(1)根据题意得:(人)答:这次一共调查了100人.(2)答:“A”类在扇形统计图中所占圆心角的度数为36°.(3)“D”类的人数=100-10-30-40=20(人)补全条形统计图如下:【点睛】本题考查的是条形统计图和扇形统计图,能找到条形统计图及扇形统计图的关联是关键.24、(1)详见解析;(2)FE=FD,证明详见解析;(3)成立,证明详见解析.【分析】(1)在射线OM,ON上分别截取OB=OC,连接AB,AC,则AO平分∠BAC;(2)过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,根据角平分线上的点到角的两边的距离相等可得FG=FH=FK,根据四边形的内角和定理求出∠GFH=120°,再根据三角形的内角和定理求出∠AFC=120°,根据对顶角相等求出∠EFD=120°,然后求出∠EFG=∠DFH,再利用“角角边”证明△EFG和△DFH全等,根据全等三角形对应边相等可得FE=FD;(3)过点F分别作FG⊥AB于点G,FH⊥BC于点H,首先证明∠GEF=∠HDF,再证明△EGF≌△DHF可得FE=FD.【详解】解:(1)如图①所示,∠BAC即为所求;(2)如图②,过点F作FG⊥AB于G,作FH⊥BC于H,作FK⊥AC于K,∵AD、CE分别是∠BAC、∠BCA的平分线,∴FG=FH=FK,在四边形BGFH中,∠GFH=360°﹣60°﹣90°×2=120°,∵AD、CE分别是∠BAC、∠BCA的平分线,∠B=60°,∴∠FAC+∠FCA=(180°﹣60°)=60°,在△AFC中,∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣60°=120°,∴∠EFD=∠AFC=120°,∴∠EFD=∠GFH∴∠EFG=∠DFH,在△EFG和△DFH中,,∴△EFG≌△DFH(ASA),∴FE=FD;(3)成立,理由:如图c,过点F分别作FG⊥AB于点G,FH⊥BC于点H.∴∠FGE=∠FHD=90°,∵∠B=60°,且AD,CE分别是∠BAC,∠BCA的平分线,∴∠FAC+∠FCA=60°,F是△ABC的内心,∴∠GEF=∠BAC+∠FCA=60°+∠BAD,∵F是△ABC的内心,即F在∠ABC的角平分线上,∴FG=FH(角平分线上的点到角的两边相等).又∵∠HDF=∠B+∠BAD=60°+∠BAD(外角的性质),∴∠GEF=∠HDF.在△EGF与△DHF中,,∴△EGF≌△DHF(AAS),∴FE=FD.【点睛】本题主要考查了全等三角形的判定及性质、角平分线的性质、三角形内角和定理及外角的性质,灵活的利用角平分线上的点到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年财务管理专业考试模拟试题及答案
- 2026年音乐表演专业学生乐器演奏与作品演绎能力测试
- 2026年国际贸易中的风险评估与应急处理外贸行业专业知识题集
- 2026年科技前沿探索人工智能与未来科技趋势题集
- 2026年市场营销策略实操题目
- 2026年经济学原理与应用模拟题集
- 2026年音乐基础知识与鉴赏能力自测题集
- 2026年人工智能算法基础测试
- 2026年经济学基础知识考试题集
- 2026年法律职业资格考试冲刺法条与案例分析题
- 2026年关于春节放假通知模板9篇
- 2025年地下矿山采掘工考试题库(附答案)
- 城市生命线安全工程建设项目实施方案
- 2026年湖南高速铁路职业技术学院单招职业技能测试必刷测试卷完美版
- 雨课堂在线学堂《中国古代舞蹈史》单元考核测试答案
- 船舶救生知识培训内容课件
- 卫生所药品自查自纠报告
- 面板数据估计量选择及效率比较
- DB11-T 808-2020 市政基础设施工程资料管理规程
- 家用电器维修手册
- JJF 2251-2025波长色散X射线荧光光谱仪校准规范
评论
0/150
提交评论