湖北鄂州市2024届高三数学试题第一次统练(一模)试题_第1页
湖北鄂州市2024届高三数学试题第一次统练(一模)试题_第2页
湖北鄂州市2024届高三数学试题第一次统练(一模)试题_第3页
湖北鄂州市2024届高三数学试题第一次统练(一模)试题_第4页
湖北鄂州市2024届高三数学试题第一次统练(一模)试题_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北鄂州市2024届高三数学试题第一次统练(一模)试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直角坐标系中,双曲线()与抛物线相交于、两点,若△是等边三角形,则该双曲线的离心率()A. B. C. D.2.已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为()A. B. C. D.3.根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u=lny,v=(x-4)2,利用最小二乘法,得到线性回归方程为=0.5v+2,则变量y的最大值的估计值是()A.e B.e2 C.ln2 D.2ln24.若x∈(0,1),a=lnx,b=,c=elnx,则a,b,c的大小关系为()A.b>c>a B.c>b>a C.a>b>c D.b>a>c5.若复数(为虚数单位),则的共轭复数的模为()A. B.4 C.2 D.6.如图,在直三棱柱中,,,点分别是线段的中点,,分别记二面角,,的平面角为,则下列结论正确的是()A. B. C. D.7.已知α,β表示两个不同的平面,l为α内的一条直线,则“α∥β是“l∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.函数图象的大致形状是()A. B.C. D.9.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为的圆柱的底面直径与高都等于球的直径,则该球的体积为()A. B. C. D.11.已知是虚数单位,若,则()A. B.2 C. D.312.在的展开式中,含的项的系数是()A.74 B.121 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若实数满足约束条件,设的最大值与最小值分别为,则_____.14.割圆术是估算圆周率的科学方法,由三国时期数学家刘徽创立,他用圆内接正多边形面积无限逼近圆面积,从而得出圆周率.现在半径为1的圆内任取一点,则该点取自其内接正十二边形内部的概率为________.15.已知点M是曲线y=2lnx+x2﹣3x上一动点,当曲线在M处的切线斜率取得最小值时,该切线的方程为_______.16.在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(Ⅰ)当时,解不等式;(Ⅱ)若的最小值为1,求的最小值.18.(12分)在中,角所对的边分别为,,的面积.(1)求角C;(2)求周长的取值范围.19.(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的人的得分(满分:分)数据,统计结果如下表所示.组别频数(1)已知此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求;(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.(ⅰ)得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;(ⅱ)每次赠送的随机话费和相应的概率如下表.赠送的随机话费/元概率现市民甲要参加此次问卷调查,记为该市民参加问卷调查获赠的话费,求的分布列及数学期望.附:,若,则,,.20.(12分)在四棱柱中,底面为正方形,,平面.(1)证明:平面;(2)若,求二面角的余弦值.21.(12分)已知四棱锥中,底面为等腰梯形,,,,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)设点,若直线与曲线相交于、两点,求的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

根据题干得到点A坐标为,代入抛物线得到坐标为,再将点代入双曲线得到离心率.【题目详解】因为三角形OAB是等边三角形,设直线OA为,设点A坐标为,代入抛物线得到x=2b,故点A的坐标为,代入双曲线得到故答案为:D.【题目点拨】求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).2、B【解题分析】

先求出直线l的方程为y(x﹣c),与y=±x联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率.【题目详解】双曲线1(a>b>0)的渐近线方程为y=±x,∵直线l的倾斜角是渐近线OA倾斜角的2倍,∴kl,∴直线l的方程为y(x﹣c),与y=±x联立,可得y或y,∵,∴2•,∴ab,∴c=2b,∴e.故选B.【题目点拨】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题.3、B【解题分析】

将u=lny,v=(x-4)2代入线性回归方程=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值.【题目详解】解:将u=lny,v=(x4)2代入线性回归方程=0.5v+2得:,即,当时,取到最大值2,因为在上单调递增,则取到最大值.故选:B.【题目点拨】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.4、A【解题分析】

利用指数函数、对数函数的单调性直接求解.【题目详解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小关系为b>c>a.故选:A.【题目点拨】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.5、D【解题分析】

由复数的综合运算求出,再写出其共轭复数,然后由模的定义计算模.【题目详解】,.故选:D.【题目点拨】本题考查复数的运算,考查共轭复数与模的定义,属于基础题.6、D【解题分析】

过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案.【题目详解】解:因为,,所以,即过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,0,,,,,,0,,,1,,,,,,,设平面的法向量,则,取,得,同理可求平面的法向量,平面的法向量,平面的法向量.,,..故选:D.【题目点拨】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.7、A【解题分析】试题分析:利用面面平行和线面平行的定义和性质,结合充分条件和必要条件的定义进行判断.解:根据题意,由于α,β表示两个不同的平面,l为α内的一条直线,由于“α∥β,则根据面面平行的性质定理可知,则必然α中任何一条直线平行于另一个平面,条件可以推出结论,反之不成立,∴“α∥β是“l∥β”的充分不必要条件.故选A.考点:必要条件、充分条件与充要条件的判断;平面与平面平行的判定.8、B【解题分析】

判断函数的奇偶性,可排除A、C,再判断函数在区间上函数值与的大小,即可得出答案.【题目详解】解:因为,所以,所以函数是奇函数,可排除A、C;又当,,可排除D;故选:B.【题目点拨】本题考查函数表达式判断函数图像,属于中档题.9、B【解题分析】

分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【题目详解】因为时,所以,,所以复数在复平面内对应的点位于第二象限.故选:B.【题目点拨】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.10、C【解题分析】

设球的半径为R,根据组合体的关系,圆柱的表面积为,解得球的半径,再代入球的体积公式求解.【题目详解】设球的半径为R,根据题意圆柱的表面积为,解得,所以该球的体积为.故选:C【题目点拨】本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.11、A【解题分析】

直接将两边同时乘以求出复数,再求其模即可.【题目详解】解:将两边同时乘以,得故选:A【题目点拨】考查复数的运算及其模的求法,是基础题.12、D【解题分析】

根据,利用通项公式得到含的项为:,进而得到其系数,【题目详解】因为在,所以含的项为:,所以含的项的系数是的系数是,,故选:D【题目点拨】本题主要考查二项展开式及通项公式和项的系数,还考查了运算求解的能力,属于基础题,二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

画出可行域,平移基准直线到可行域边界位置,由此求得最大值以及最小值,进而求得的比值.【题目详解】画出可行域如下图所示,由图可知,当直线过点时,取得最大值7;过点时,取得最小值2,所以.【题目点拨】本小题主要考查利用线性规划求线性目标函数的最值.这种类型题目的主要思路是:首先根据题目所给的约束条件,画出可行域;其次是求得线性目标函数的基准函数;接着画出基准函数对应的基准直线;然后通过平移基准直线到可行域边界的位置;最后求出所求的最值.属于基础题.14、【解题分析】

求出圆内接正十二边形的面积和圆的面积,再用几何概型公式求出即可.【题目详解】半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,∴该正十二边形的面积为,根据几何概型公式,该点取自其内接正十二边形的概率为,故答案为:.【题目点拨】本小题主要考查面积型几何概型的计算,属于基础题.15、【解题分析】

先求导数可得切线斜率,利用基本不等式可得切点横坐标,从而可得切线方程.【题目详解】,,=1时有最小值1,此时M(1,﹣2),故切线方程为:,即.故答案为:.【题目点拨】本题主要考查导数的几何意义,切点处的导数值等于切线的斜率是求解的关键,侧重考查数学运算的核心素养.16、1【解题分析】

由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值.【题目详解】的二项展开式的中,只有第5项的二项式系数最大,,通项公式为,令,求得,可得二项展开式常数项等于,故答案为1.【题目点拨】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)当时,令,作出的图像,结合图像即可求解;(Ⅱ)结合绝对值三角不等式可得,再由“1”的妙用可拼凑为,结合基本不等式即可求解;【题目详解】(Ⅰ)令,作出它们的大致图像如下:由或(舍),得点横坐标为2,由对称性知,点横坐标为﹣2,因此不等式的解集为.(Ⅱ)..取等号的条件为,即,联立得因此的最小值为.【题目点拨】本题考查绝对值不等式、基本不等式,属于中档题18、(Ⅰ)(Ⅱ)【解题分析】

(Ⅰ)由可得到,代入,结合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并结合正弦定理可得到,利用,,可得到,进而可求出周长的范围.【题目详解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周长为.∵,∴,∴,∴的周长的取值范围为.【题目点拨】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了三角形的面积公式,考查了学生分析问题、解决问题的能力,属于基础题.19、(1);(2)见解析.【解题分析】

(1)根据题中所给的统计表,利用公式计算出平均数的值,再利用数据之间的关系将、表示为,,利用题中所给数据,以及正态分布的概率密度曲线的对称性,求出对应的概率;(2)根据题意,高于平均数和低于平均数的概率各为,再结合得元、元的概率,分析得出话费的可能数据都有哪些,再利用公式求得对应的概率,进而得出分布列,之后利用离散型随机变量的分布列求出其数学期望.【题目详解】(1)由题意可得,易知,,,;(2)根据题意,可得出随机变量的可能取值有、、、元,,,,.所以,随机变量的分布列如下表所示:所以,随机变量的数学期望为.【题目点拨】本题考查概率的计算,涉及到平均数的求法、正态分布概率的计算以及离散型随机变量分布列及其数学期望,在解题时要弄清楚随机变量所满足的分布列类型,结合相应公式计算对应事件的概率,考查计算能力,属于中等题.20、(1)详见解析;(2).【解题分析】

(1)连接,设,可证得四边形为平行四边形,由此得到,根据线面平行判定定理可证得结论;(2)以为原点建立空间直角坐标系,利用二面角的空间向量求法可求得结果.【题目详解】(1)连接,设,连接,在四棱柱中,分别为的中点,,四边形为平行四边形,,平面,平面,平面.(2)以为原点,所在直线分别为轴建立空间直角坐标系.设,四边形为正方形,,,则,,,,,,,设为平面的法向量,为平面的法向量,由得:,令,则,,由得:,令,则,,,,,二面角为锐二面角,二面角的余弦值为.【题目点拨】本题考查立体几何中线面平行关系的证明、空间向量法求解二面角的问题;关键是能够熟练掌握二面角的向量求法,易错点是求得法向量夹角余弦值后,未根据图形判断

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论