版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省莲塘一中、临川二中高三4月模拟(二模)考试数学试题理试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.2.若双曲线的渐近线与圆相切,则双曲线的离心率为()A.2 B. C. D.3.已知函数为奇函数,则()A. B.1 C.2 D.34.已知,,则等于().A. B. C. D.5.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A.72 B.64 C.48 D.326.将函数的图像向左平移个单位得到函数的图像,则的最小值为()A. B. C. D.7.已知抛物线:的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则为()A. B.40 C.16 D.8.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的;小金说:“兴国之路”不是我制作的,若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是()A.小明 B.小红 C.小金 D.小金或小明9.已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点()A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变10.设i是虚数单位,若复数是纯虚数,则a的值为()A. B.3 C.1 D.11.已知命题p:若,,则;命题q:,使得”,则以下命题为真命题的是()A. B. C. D.12.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,内角所对的边分别为,若,的面积为,则_______,_______.14.已知函数,则函数的极大值为___________.15.如图,直线平面,垂足为,三棱锥的底面边长和侧棱长都为4,在平面内,是直线上的动点,则点到平面的距离为_______,点到直线的距离的最大值为_______.16.已知函数,若在定义域内恒有,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)若,求函数的值域;(2)设为的三个内角,若,求的值;18.(12分)已知函数,且.(1)若,求的最小值,并求此时的值;(2)若,求证:.19.(12分)已知,.(1)解不等式;(2)若方程有三个解,求实数的取值范围.20.(12分)如图,平面四边形中,,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.21.(12分)设函数f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(22.(10分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.(1)求的通项公式;(2)若数列满足,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
利用已知条件画出几何体的直观图,然后求解几何体的体积.【题目详解】几何体的三视图的直观图如图所示,则该几何体的体积为:.故选:.【题目点拨】本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键.2、C【解题分析】
利用圆心到渐近线的距离等于半径即可建立间的关系.【题目详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【题目点拨】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.3、B【解题分析】
根据整体的奇偶性和部分的奇偶性,判断出的值.【题目详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【题目点拨】本小题主要考查根据函数的奇偶性求参数值,属于基础题.4、B【解题分析】
由已知条件利用诱导公式得,再利用三角函数的平方关系和象限角的符号,即可得到答案.【题目详解】由题意得,又,所以,结合解得,所以,故选B.【题目点拨】本题考查三角函数的诱导公式、同角三角函数的平方关系以及三角函数的符号与位置关系,属于基础题.5、B【解题分析】
由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。【题目详解】由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,所以几何体的体积为,故选B。【题目点拨】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。6、B【解题分析】
根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.【题目详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,,当时,取得最小值为,故选:.【题目点拨】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.7、D【解题分析】
如图所示,过分别作于,于,利用和,联立方程组计算得到答案.【题目详解】如图所示:过分别作于,于.,则,根据得到:,即,根据得到:,即,解得,,故.故选:.【题目点拨】本题考查了抛物线中弦长问题,意在考查学生的计算能力和转化能力.8、B【解题分析】
将三个人制作的所有情况列举出来,再一一论证.【题目详解】依题意,三个人制作的所有情况如下所示:123456鸿福齐天小明小明小红小红小金小金国富民强小红小金小金小明小红小明兴国之路小金小红小明小金小明小红若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红,故选:B.【题目点拨】本题考查推理与证明,还考查推理论证能力以及分类讨论思想,属于基础题.9、D【解题分析】
由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【题目详解】由函数的图象关于直线对称,得,即,解得,所以,,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D【题目点拨】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题10、D【解题分析】
整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【题目详解】由题,,因为纯虚数,所以,则,故选:D【题目点拨】本题考查已知复数的类型求参数范围,考查复数的除法运算.11、B【解题分析】
先判断命题的真假,进而根据复合命题真假的真值表,即可得答案.【题目详解】,,因为,,所以,所以,即命题p为真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B.【题目点拨】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题的真假,难度较易.12、A【解题分析】
根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【题目详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【题目点拨】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由已知及正弦定理,三角函数恒等变换的应用可得,从而求得,结合范围,即可得到答案运用余弦定理和三角形面积公式,结合完全平方公式,即可得到答案【题目详解】由已知及正弦定理可得,可得:解得,即,由面积公式可得:,即由余弦定理可得:即有解得【题目点拨】本题主要考查了运用正弦定理、余弦定理和面积公式解三角形,题目较为基础,只要按照题意运用公式即可求出答案14、【解题分析】
对函数求导,通过赋值,求得,再对函数单调性进行分析,求得极大值.【题目详解】,故解得,,令,解得函数在单调递增,在单调递减,故的极大值为故答案为:.【题目点拨】本题考查函数极值的求解,难点是要通过赋值,求出未知量.15、【解题分析】
三棱锥的底面边长和侧棱长都为4,所以在平面的投影为的重心,利用解直角三角形,即可求出点到平面的距离;,可得点是以为直径的球面上的点,所以到直线的距离为以为直径的球面上的点到的距离,最大距离为分别过和的两个平行平面间距离加半径,即可求出结论.【题目详解】边长为,则中线长为,点到平面的距离为,点是以为直径的球面上的点,所以到直线的距离为以为直径的球面上的点到的距离,最大距离为分别过和的两个平行平面间距离加半径.又三棱锥的底面边长和侧棱长都为4,以下求过和的两个平行平面间距离,分别取中点,连,则,同理,分别过做,直线确定平面,直线确定平面,则,同理,为所求,,,所以到直线最大距离为.故答案为:;.【题目点拨】本题考查空间中的距离、正四面体的结构特征,考查空间想象能力,属于较难题.16、【解题分析】
根据指数函数与对数函数图象可将原题转化为恒成立问题,凑而可知的图象在过原点且与两函数相切的两条切线之间;利用过一点的曲线切线的求法可求得两切线斜率,结合分母不为零的条件可最终确定的取值范围.【题目详解】由指数函数与对数函数图象可知:,恒成立可转化为恒成立,即恒成立,,即是夹在函数与的图象之间,的图象在过原点且与两函数相切的两条切线之间.设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;当时,,又,满足题意;综上所述:实数的取值范围为.【题目点拨】本题考查恒成立问题的求解,重点考查了导数几何意义应用中的过一点的曲线切线的求解方法;关键是能够结合指数函数和对数函数图象将问题转化为切线斜率的求解问题;易错点是忽略分母不为零的限制,忽略对于临界值能否取得的讨论.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)将,利用三角恒等变换转化为:,,再根据正弦函数的性质求解,(2)根据,得,又为的内角,得到,再根据,利用两角和与差的余弦公式求解,【题目详解】(1),,,,即的值域为;(2)由,得,又为的内角,所以,又因为在中,,所以,所以.【题目点拨】本题主要考查三角恒等变换和三角函数的性质,还考查了运算求解的能力,属于中档题,18、(1)最小值为,此时;(2)见解析【解题分析】
(1)由已知得,法一:,,根据二次函数的最值可求得;法二:运用基本不等式构造,可得最值;法三:运用柯西不等式得:,可得最值;(2)由绝对值不等式得,,又,可得证.【题目详解】(1),法一:,,的最小值为,此时;法二:,,即的最小值为,此时;法三:由柯西不等式得:,,即的最小值为,此时;(2),,又,.【题目点拨】本题考查运用基本不等式,柯西不等式,绝对值不等式进行不等式的证明和求解函数的最值,属于中档题.19、(1);(2).【解题分析】
(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2).作出函数的图象,当直线与函数的图象有三个公共点时,方程有三个解,由图可得结果.【题目详解】(1)不等式,即为.当时,即化为,得,此时不等式的解集为,当时,即化为,解得,此时不等式的解集为.综上,不等式的解集为.(2)即.作出函数的图象如图所示,当直线与函数的图象有三个公共点时,方程有三个解,所以.所以实数的取值范围是.【题目点拨】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.20、(1)见解析;(2)【解题分析】
(1)要证平面平面,只需证平面,而,所以只需证,而由已知的数据可证得为等边三角形,又由于是的中点,所以,从而可证得结论;(2)由于在中,,而平面平面,所以点在平面的投影恰好为的中点,所以如图建立空间直角坐标系,利用空间向量求解.【题目详解】(1)由,所以平面四边形为直角梯形,设,因为.所以在中,,则,又,所以,由,所以为等边三角形,又是的中点,所以,又平面,则有平面,而平面,故平面平面.(2)解法一:在中,,取中点,所以,由(1)可知平面平面,平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年台州市商贸核心区开发建设投资集团有限公司公开招聘工作人员的备考题库完整参考答案详解
- 2026年南京中远海运物流有限公司招聘备考题库及答案详解1套
- 2026年小学语文老师招聘备考题库完整参考答案详解
- 2026年台州市椒江区进出口企业协会公开招聘编外工作人员备考题库及答案详解1套
- 市商务局内控制度汇编
- 队伍内控制度
- 内控制度报告填报流程
- 包装中心内控制度
- 医用物资采购内控制度
- 国土所内控制度
- 雨课堂学堂在线学堂云《科学研究方法与论文写作(复大)》单元测试考核答案
- 地球小博士知识竞赛练习试题及答案
- 殡仪馆鲜花采购投标方案
- 中小学生意外伤害防范
- 动静脉瘘课件
- 新疆宗教事务条例课件
- 2025年工会主席述职报告模版(六)
- 2025四川成都轨道交通集团有限公司校招9人笔试历年备考题库附带答案详解试卷2套
- 药品生产培训课件
- 贵州省县中新学校计划项目2024-2025学年高一上学期期中联考地理试题(解析版)
- 【2025年】天翼云解决方案架构师认证考试笔试卷库下(多选、判断题)含答案
评论
0/150
提交评论