版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省太原市第四十八中学2024届高考5月模拟考试数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A={y|y},B={x|y=lg(x﹣2x2)},则∁R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)2.等比数列的前项和为,若,,,,则()A. B. C. D.3.已知集合,则等于()A. B. C. D.4.年某省将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A. B. C. D.5.设,其中a,b是实数,则()A.1 B.2 C. D.6.复数满足(为虚数单位),则的值是()A. B. C. D.7.在中,,,,点,分别在线段,上,且,,则().A. B. C.4 D.98.设是虚数单位,,,则()A. B. C.1 D.29.如图在直角坐标系中,过原点作曲线的切线,切点为,过点分别作、轴的垂线,垂足分别为、,在矩形中随机选取一点,则它在阴影部分的概率为()A. B. C. D.10.的展开式中,含项的系数为()A. B. C. D.11.已知不重合的平面和直线,则“”的充分不必要条件是()A.内有无数条直线与平行 B.且C.且 D.内的任何直线都与平行12.一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16…).则首项为2,某一项为2020的超级斐波那契数列的个数为()A.3 B.4 C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.曲线在处的切线的斜率为________.14.如图,棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和,并将两弧各五等分,分点依次为、、、、、以及、、、、、.一只蚂蚁欲从点出发,沿正方体的表面爬行至,则其爬行的最短距离为________.参考数据:;;)15.已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是____.16.记为等比数列的前n项和,已知,,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.18.(12分)若正数满足,求的最小值.19.(12分)2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID—19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,…,10)建立模型和.(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;(3)以下是1月25日至1月29日累计确诊人数的真实数据,根据(2)的结果回答下列问题:时间1月25日1月26日1月27日1月28日1月29日累计确诊人数的真实数据19752744451559747111(ⅰ)当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?(ⅱ)2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?附:对于一组数据(,,……,,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:其中,.5.53901938576403152515470010015022533850720.(12分)已知函数.(1)解不等式;(2)记函数的最小值为,正实数、满足,求证:.21.(12分)已知函数.(1)当时,求曲线在点的切线方程;(2)讨论函数的单调性.22.(10分)已知函数(,)满足下列3个条件中的2个条件:①函数的周期为;②是函数的对称轴;③且在区间上单调.(Ⅰ)请指出这二个条件,并求出函数的解析式;(Ⅱ)若,求函数的值域.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【题目详解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴∁R(A∩B)=(﹣∞,0]∪[,+∞).故选:D.【题目点拨】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.2、D【解题分析】试题分析:由于在等比数列中,由可得:,又因为,所以有:是方程的二实根,又,,所以,故解得:,从而公比;那么,故选D.考点:等比数列.3、C【解题分析】
先化简集合A,再与集合B求交集.【题目详解】因为,,所以.故选:C【题目点拨】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.4、B【解题分析】
甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B.5、D【解题分析】
根据复数相等,可得,然后根据复数模的计算,可得结果.【题目详解】由题可知:,即,所以则故选:D【题目点拨】本题考查复数模的计算,考验计算,属基础题.6、C【解题分析】
直接利用复数的除法的运算法则化简求解即可.【题目详解】由得:本题正确选项:【题目点拨】本题考查复数的除法的运算法则的应用,考查计算能力.7、B【解题分析】
根据题意,分析可得,由余弦定理求得的值,由可得结果.【题目详解】根据题意,,则在中,又,则则则则故选:B【题目点拨】此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.8、C【解题分析】
由,可得,通过等号左右实部和虚部分别相等即可求出的值.【题目详解】解:,,解得:.故选:C.【题目点拨】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把当成进行运算.9、A【解题分析】
设所求切线的方程为,联立,消去得出关于的方程,可得出,求出的值,进而求得切点的坐标,利用定积分求出阴影部分区域的面积,然后利用几何概型概率公式可求得所求事件的概率.【题目详解】设所求切线的方程为,则,联立,消去得①,由,解得,方程①为,解得,则点,所以,阴影部分区域的面积为,矩形的面积为,因此,所求概率为.故选:A.【题目点拨】本题考查定积分的计算以及几何概型,同时也涉及了二次函数的切线方程的求解,考查计算能力,属于中等题.10、B【解题分析】
在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数.【题目详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【题目点拨】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.11、B【解题分析】
根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【题目详解】A.内有无数条直线与平行,则相交或,排除;B.且,故,当,不能得到且,满足;C.且,,则相交或,排除;D.内的任何直线都与平行,故,若,则内的任何直线都与平行,充要条件,排除.故选:.【题目点拨】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.12、A【解题分析】
根据定义,表示出数列的通项并等于2020.结合的正整数性质即可确定解的个数.【题目详解】由题意可知首项为2,设第二项为,则第三项为,第四项为,第五项为第n项为且,则,因为,当的值可以为;即有3个这种超级斐波那契数列,故选:A.【题目点拨】本题考查了数列新定义的应用,注意自变量的取值范围,对题意理解要准确,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
求出函数的导数,利用导数的几何意义令,即可求出切线斜率.【题目详解】,,,即曲线在处的切线的斜率.故答案为:【题目点拨】本题考查了导数的几何意义、导数的运算法则以及基本初等函数的导数,属于基础题.14、【解题分析】
根据空间位置关系,将平面旋转后使得各点在同一平面内,结合角的关系即可求得两点间距离的三角函数表达式.根据所给参考数据即可得解.【题目详解】棱长为2的正方体中,点分别为棱的中点,以为圆心,1为半径,分别在面和面内作弧和.将平面绕旋转至与平面共面的位置,如下图所示:则,所以;将平面绕旋转至与平面共面的位置,将绕旋转至与平面共面的位置,如下图所示:则,所以;因为,且由诱导公式可得,所以最短距离为,故答案为:.【题目点拨】本题考查了空间几何体中最短距离的求法,注意将空间几何体展开至同一平面内求解的方法,三角函数诱导公式的应用,综合性强,属于难题.15、【解题分析】Aa设正四棱柱的高为h得到故得到正四棱柱的体积为故答案为54.16、【解题分析】
设等比数列的公比为,将已知条件等式转化为关系式,求解即可.【题目详解】设等比数列的公比为,,.故答案为:.【题目点拨】本题考查等比数列通项的基本量运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析,40元(2)6000元【解题分析】
(1)甲、乙两人所付的健身费用都是0元、20元、40元三种情况,因此甲、乙两人所付的健身费用之和共有9种情况,分情况计算即可(2)根据(1)结果求均值.【题目详解】解:(1)由题设知可能取值为0,20,40,60,80,则;;;;.故的分布列为:020406080所以数学期望(元)(2)此次促销活动后健身馆每天的营业额预计为:(元)【题目点拨】考查离散型随机变量的分布列及其期望的求法,中档题.18、【解题分析】试题分析:由柯西不等式得,所以试题解析:因为均为正数,且,所以.于是由均值不等式可知,当且仅当时,上式等号成立.从而.故的最小值为.此时.考点:柯西不等式19、(1)适宜(2)(3)(ⅰ)回归方程可靠(ⅱ)防护措施有效【解题分析】
(1)根据散点图即可判断出结果.(2)设,则,求出,再由回归方程过样本中心点求出,即可求出回归方程.(3)(ⅰ)利用表中数据,计算出误差即可判断回归方程可靠;(ⅱ)当时,,与真实值作比较即可判断有效.【题目详解】(1)根据散点图可知:适宜作为累计确诊人数与时间变量的回归方程类型;(2)设,则,,,;(3)(ⅰ)时,,,当时,,,当时,,,所以(2)的回归方程可靠:(ⅱ)当时,,10150远大于7111,所以防护措施有效.【题目点拨】本题考查了函数模型的应用,在求非线性回归方程时,现将非线性的化为线性的,考查了误差的计算以及用函数模型分析数据,属于基础题.20、(1);(2)见解析.【解题分析】
(1)分、、三种情况解不等式,综合可得出原不等式的的解集;(2)利用绝对值三角不等式可求得函数的最小值为,进而可得出,再将代数式与相乘,利用基本不等式求得的最小值,进而可证得结论成立.【题目详解】(1)当时,由,得,即,解得,此时;当时,由,得,即,解得,此时;当时,由,得,即,解得,此时.综上所述,不等式的解集为;(2),当且仅当时取等号,所以,.所以,当且仅当,即,时等号成立,所以.所以,即.【题目点拨】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式成立,涉及绝对值三角不等式的应用,考查运算求解能力,属于中等题.21、(1);(2)当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深圳健康证考试题及答案
- 人禽流感考试题及答案
- 2025九年级化学上册第三单元物质构成的奥秘综合素质评价新版新人教版
- 辅警交通违法培训课件
- 2026 年初中英语《同位语从句》专题练习与解析 (100 题)
- 《GAT 591-2023法庭科学 照相设备技术条件》专题研究报告
- 2026年深圳中考语文图文转换专项试卷(附答案可下载)
- 《GAT 120-2021法庭科学 视频图像检验术语》专题研究报告深度
- 2026年深圳中考物理学困生补差试卷(附答案可下载)
- 2026年大学大二(交通工程)交通管理与控制阶段测试试题及答案
- TOC制约法纵览高德拉特企管公司
- 配电网工程施工方案模板
- 港口集装箱运输AGV项目规划设计方案
- YY/T 1919-2023超声造影成像性能试验方法
- 国际私法(鲁东大学)智慧树知到课后章节答案2023年下鲁东大学
- 政府采购评审专家考试试题库-多选及答案(252题)
- 中介服务协议书
- XX服装店股份众筹合伙人制度方案
- 老年人评估量表
- 人教PEP版小学《英语》三年级上册Unit6HappyBirthday!PartB教学设计
- GB/T 3532-2022日用瓷器
评论
0/150
提交评论