




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省西安音乐学院附属中等音乐学校高三下学期定时训练数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度2.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,,不共线时,的面积的最大值是()A. B. C. D.3.某几何体的三视图如右图所示,则该几何体的外接球表面积为()A. B.C. D.4.设集合,,若,则的取值范围是()A. B. C. D.5.函数的部分图像大致为()A. B.C. D.6.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:黄赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年7.在平面直角坐标系中,锐角顶点在坐标原点,始边为x轴正半轴,终边与单位圆交于点,则()A. B. C. D.8.的二项展开式中,的系数是()A.70 B.-70 C.28 D.-289.的展开式中的系数是-10,则实数()A.2 B.1 C.-1 D.-210.设双曲线(a>0,b>0)的一个焦点为F(c,0)(c>0),且离心率等于,若该双曲线的一条渐近线被圆x2+y2﹣2cx=0截得的弦长为2,则该双曲线的标准方程为()A. B.C. D.11.已知函数是定义在上的偶函数,当时,,则,,的大小关系为()A. B. C. D.12.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是()A.16 B.12 C.8 D.6二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,的系数是__________.(用数字填写答案)14.下图是一个算法流程图,则输出的的值为__________.15.设点P在函数的图象上,点Q在函数的图象上,则线段PQ长度的最小值为_________16.若实数x,y满足约束条件,则的最大值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值.18.(12分)已知,且.(1)请给出的一组值,使得成立;(2)证明不等式恒成立.19.(12分)已知函数(,)满足下列3个条件中的2个条件:①函数的周期为;②是函数的对称轴;③且在区间上单调.(Ⅰ)请指出这二个条件,并求出函数的解析式;(Ⅱ)若,求函数的值域.20.(12分)已知函数(是自然对数的底数,).(1)求函数的图象在处的切线方程;(2)若函数在区间上单调递增,求实数的取值范围;(3)若函数在区间上有两个极值点,且恒成立,求满足条件的的最小值(极值点是指函数取极值时对应的自变量的值).21.(12分)若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:月份1月2月3月4月5月6月7月8月月养殖量/千只33456791012月利润/十万元3.64.14.45.26.27.57.99.1生猪死亡数/只293749537798126145(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,参考数据:.22.(10分)已知函数(1)若函数有且只有一个零点,求实数的取值范围;(2)若函数对恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
依题意可得,且是的一条对称轴,即可求出的值,再根据三角函数的平移规则计算可得;【题目详解】解:由已知得,是的一条对称轴,且使取得最值,则,,,,故选:C.【题目点拨】本题考查三角函数的性质以及三角函数的变换规则,属于基础题.2、A【解题分析】
根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【题目详解】如图所示:设,,,则,化简得,当点到(轴)距离最大时,的面积最大,∴面积的最大值是.故选:A.【题目点拨】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.3、A【解题分析】
由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,结合直观图判断外接球球心的位置,求出半径,代入求得表面积公式计算.【题目详解】由三视图知:几何体为三棱锥,且三棱锥的一条侧棱垂直于底面,高为2,底面为等腰直角三角形,斜边长为,如图:的外接圆的圆心为斜边的中点,,且平面,,的中点为外接球的球心,半径,外接球表面积.故选:A【题目点拨】本题考查了由三视图求几何体的外接球的表面积,根据三视图判断几何体的结构特征,利用几何体的结构特征与数据求得外接球的半径是解答本题的关键.4、C【解题分析】
由得出,利用集合的包含关系可得出实数的取值范围.【题目详解】,且,,.因此,实数的取值范围是.故选:C.【题目点拨】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.5、A【解题分析】
根据函数解析式,可知的定义域为,通过定义法判断函数的奇偶性,得出,则为偶函数,可排除选项,观察选项的图象,可知代入,解得,排除选项,即可得出答案.【题目详解】解:因为,所以的定义域为,则,∴为偶函数,图象关于轴对称,排除选项,且当时,,排除选项,所以正确.故选:A.【题目点拨】本题考查由函数解析式识别函数图象,利用函数的奇偶性和特殊值法进行排除.6、D【解题分析】
先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项.【题目详解】解:由题意,可设冬至日光与垂直线夹角为,春秋分日光与垂直线夹角为,则即为冬至日光与春秋分日光的夹角,即黄赤交角,将图3近似画出如下平面几何图形:则,,.,估计该骨笛的大致年代早于公元前6000年.故选:.【题目点拨】本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题.7、A【解题分析】
根据单位圆以及角度范围,可得,然后根据三角函数定义,可得,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果.【题目详解】由题可知:,又为锐角所以,根据三角函数的定义:所以由所以故选:A【题目点拨】本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.8、A【解题分析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A.考点:二项式定理的应用.9、C【解题分析】
利用通项公式找到的系数,令其等于-10即可.【题目详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C【题目点拨】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.10、C【解题分析】
由题得,,又,联立解方程组即可得,,进而得出双曲线方程.【题目详解】由题得①又该双曲线的一条渐近线方程为,且被圆x2+y2﹣2cx=0截得的弦长为2,所以②又③由①②③可得:,,所以双曲线的标准方程为.故选:C【题目点拨】本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.11、C【解题分析】
根据函数的奇偶性得,再比较的大小,根据函数的单调性可得选项.【题目详解】依题意得,,当时,,因为,所以在上单调递增,又在上单调递增,所以在上单调递增,,即,故选:C.【题目点拨】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题.12、B【解题分析】
根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【题目详解】由题可知:该几何体的底面正三角形的边长为2所以该正三棱柱的三个侧面均为边长为2的正方形,所以该正三棱柱的侧面积为故选:B【题目点拨】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据组合的知识,结合组合数的公式,可得结果.【题目详解】由题可知:项来源可以是:(1)取1个,4个(2)取2个,3个的系数为:故答案为:【题目点拨】本题主要考查组合的知识,熟悉二项式定理展开式中每一项的来源,实质上每个因式中各取一项的乘积,转化为组合的知识,属中档题.14、3【解题分析】
分析程序中各变量、各语句的作用,根据流程图所示的顺序,即可得出结论.【题目详解】解:初始,第一次循环:;第二次循环:;第三次循环:;经判断,此时跳出循环,输出.故答案为:【题目点拨】本题考查了程序框图的应用问题,解题的关键是对算法语句的理解,属基础题.15、【解题分析】
由解析式可分析两函数互为反函数,则图象关于对称,则点到的距离的最小值的二倍即为所求,利用导函数即可求得最值.【题目详解】由题,因为与互为反函数,则图象关于对称,设点为,则到直线的距离为,设,则,令,即,所以当时,,即单调递减;当时,,即单调递增,所以,则,所以的最小值为,故答案为:【题目点拨】本题考查反函数的性质的应用,考查利用导函数研究函数的最值问题.16、3【解题分析】
作出可行域,可得当直线经过点时,取得最大值,求解即可.【题目详解】作出可行域(如下图阴影部分),联立,可求得点,当直线经过点时,.故答案为:3.【题目点拨】本题考查线性规划,考查数形结合的数学思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)1【解题分析】
(Ⅰ)由题,得,,解方程组,即可得到本题答案;(Ⅱ)设直线,则直线,联立,得,联立,得,由此即可得到本题答案.【题目详解】(Ⅰ)由题可得,即,,将点代入方程得,即,解得,所以椭圆的方程为:;(Ⅱ)由(Ⅰ)知,设直线,则直线,联立,整理得,所以,联立,整理得,设,则,所以,所以.【题目点拨】本题主要考查椭圆标准方程的求法以及直线与椭圆的综合问题,考查学生的运算求解能力.18、(1)(答案不唯一)(2)证明见解析【解题分析】
(1)找到一组符合条件的值即可;(2)由可得,整理可得,两边同除可得,再由可得,两边同时加可得,即可得证.【题目详解】解析:(1)(答案不唯一)(2)证明:由题意可知,,因为,所以.所以,即.因为,所以,因为,所以,所以.【题目点拨】考查不等式的证明,考查不等式的性质的应用.19、(Ⅰ)只有①②成立,;(Ⅱ).【解题分析】
(Ⅰ)依次讨论①②成立,①③成立,②③成立,计算得到只有①②成立,得到答案.(Ⅱ)得到,得到函数值域.【题目详解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,则,,,若①③成立,则,,不合题意,若②③成立,则,,与③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由题意得,,所以函数的值域为.【题目点拨】本题考查了三角函数的周期,对称轴,单调性,值域,表达式,意在考查学生对于三角函数知识的综合应用.20、(1);(2);(3).【解题分析】
(1)利用导数的几何意义计算即可;(2)在上恒成立,只需,注意到;(3)在上有两根,令,求导可得在上单调递减,在上单调递增,所以且,,,求出的范围即可.【题目详解】(1)因为,所以,当时,,所以切线方程为,即.(2),.因为函数在区间上单调递增,所以,且恒成立,即,所以,即,又,故,所以实数的取值范围是.(3).因为函数在区间上有两个极值点,所以方程在上有两不等实根,即.令,则,由,得,所以在上单调递减,在上单调递增,所以,解得且.又由,所以,且当和时,单调递增,当时,单调递减,是极值点,此时令,则,所以在上单调递减,所以.因为恒成立,所以.若,取,则,所以.令,则,.当时,;当时,.所以,所以在上单调递增,所以,即存在使得,不合题意.满足条件的的最小值为-4.【题目点拨】本题考查导数的综合应用,涉及到导数的几何意义,利用导数研究函数的单调性、极值点,不等式恒成立等知识,是一道难题.21、(1);(2);(3)利润约为111.2万元.【解题分析】
(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年PS铝合金板项目发展计划
- 2025年加工羽毛(绒)合作协议书
- 2025年入团培训考试题目及答案
- 2025年莘县社工招聘考试真题及答案
- 2025年大学团员考试题型及答案
- 事业管理人员考试及答案
- 恩启奶粉培训知识课件
- 恐怖完整的课件
- 急诊科护理工作总结
- 运动塑形考试题及答案
- 公司志编纂工作方案
- 新人教版物理八年级下册知识点总结-物理八年级下册考点人教版
- 抗战胜利70周年主题班会教案
- 2025年九年级语文上册课后习题参考答案
- 2025年保安证考试沟通能力试题及答案
- 全套课件-工程建设监理概论
- 餐饮服务与数字化运营 习题及答案 项目三
- 人教板七年级至九年级英语单词表
- 安全主任竞聘演讲稿
- 污水处理中的自动化控制技术
- 输电线路导地线悬垂双串使用情况探讨
评论
0/150
提交评论