




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市六合区2023年八上数学期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如果分式方程的解是,则的值是()A.3 B.2 C.-2 D.-32.如图,在中,,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当,时,则阴影部分的面积为()A.4 B. C. D.83.如图所示.在△ABC中,∠C=90°,DE垂直平分AB,交BC于点E,垂足为点D,BE=6cm,∠B=15°,则AC等于()A.6cm B.5cm C.4cm D.3cm4.在△ABC中,AB=2cm,AC=5cm,若BC的长为整数,则BC的长可能是()A.2cm B.3cm C.6cm D.7cm5.用代入法解方程组时消去y,下面代入正确的是()A. B. C. D.6.下列四个图形中,是轴对称图形的有()A.4个 B.3个 C.2个 D.1个7.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(),下列四个说法:①,②,③,④.其中说法正确的是()A.①② B.①②③ C.①②④ D.①②③④8.如图,若BD是等边△ABC的一条中线,延长BC至点E,使CE=CD=x,连接DE,则DE的长为()A. B. C. D.9.如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为16cm,则△ABC的周长为()A.21cm B.26cm C.28cm D.31cm10.下列长度的三条线段,能构成直角三角形的是()A.8,9,10 B.1.5,5,2 C.6,8,10 D.20,21,32二、填空题(每小题3分,共24分)11.如图,在等边中,是的中点,是的中点,是上任意一点.如果,,那么的最小值是.12.将一副三角板按如图所示摆放,使点A在DE上,BC∥DE,其中∠B=45°,∠D=60°,则∠AFC的度数是_____.13.如图,AC⊥BC,AD⊥BD,垂足分别是C、D,若要用“HL”得到Rt△ABC≌Rt△BAD,则你添加的条件是______________.(写一种即可)14.当x______时,分式无意义.15.我国的纸伞工艺十分巧妙,如图,伞不论张开还是缩拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC和∠EDF,使与始终全等,从而保证伞圈D能沿着伞柄滑动,则的理由是_____.16.如图,直线,直角三角板的直角顶点落在直线上,若,则等于_______.17.定义一种新运算,例如,若,则______.18.如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为.三、解答题(共66分)19.(10分)如图1,等腰直角三角形ABP是由两块完全相同的小直角三角板ABC、EFP(含45°)拼成的,其中△ABC的边BC在直线上,AC⊥BC且AC=BC;△EFP的边FP也在直线上,边EF与边AC重合,EF⊥FP且EF=FP.(1)将三角板△EFP沿直线向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(2)将三角板△EFP沿直线向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(1)中猜想的关系还成立吗?请写出你的结论(不需证明)20.(6分)已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D,(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.21.(6分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是(填写序号即可);(2)若a为正整数,且为“和谐分式”,请写出a的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:原式===,小强:原式==,显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:,请你接着小强的方法完成化简.22.(8分)按要求完成下列作图,不要求写作法,只保留作图痕迹.(1)已知:线段AB,作出线段AB的垂直平分线MN.(2)已知:∠AOB,作出∠AOB的平分线OC.(3)已知:线段a和b,求作:等腰三角形,使等腰三角形的底边长为a,底边上的高的长为b.23.(8分)已知:关于的方程.当m为何值时,方程有两个实数根.24.(8分)如图,△ABC为等腰三角形,AC=BC,△BDC和△CAE分别为等边三角形,AE与BD相交于点F,连接CF并延长,交AB于点G.求证:∠ACG=∠BCG.25.(10分)如图,ΔABC中,A点坐标为(2,4),B点坐标为(-3,-2),C点坐标为(3,1).(1)在图中画出ΔABC关于y轴对称的ΔA′B′C′(不写画法),并写出点A′,B′,C′的坐标;(2)求ΔABC的面积.26.(10分)如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.(1)求证:∠A=2∠E,以下是小明的证明过程,请在括号里填写理由.证明:∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知)∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(_________)∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性质)∵CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知)∴∠ACD=2∠2,∠ABC=2∠1(_______)∴∠A=2∠2﹣2∠1(_________)=2(∠2﹣∠1)(_________)=2∠E(等量代换)(2)如果∠A=∠ABC,求证:CE∥AB.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先把代入原方程,可得关于a的方程,再解方程即得答案.【详解】解:∵方程的解是,∴,解得:a=﹣1.经检验,a=﹣1符合题意.故选:C.【点睛】本题考查了分式方程的解及其解法,属于基本题型,熟练掌握分式方程的解法是解题关键.2、A【分析】先根据勾股定理求出AB,然后根据S阴影=S半圆AC+S半圆BC+S△ABC-S半圆AB计算即可.【详解】解:根据勾股定理可得AB=∴S阴影=S半圆AC+S半圆BC+S△ABC-S半圆AB===4故选A.【点睛】此题考查的是求不规则图形的面积,掌握用勾股定理解直角三角形、半圆的面积公式和三角形的面积公式是解决此题的关键.3、D【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分性质求出BE=AE=6cm,求出∠EAB=∠B=15°,即可求出∠EAC,根据含30°角的直角三角形性质求出即可.【详解】∵在△ABC中,∠ACB=90°,∠B=15°∴∠BAC=90°-15°=75°∵DE垂直平分AB,BE=6cm∴BE=AE=6cm,∴∠EAB=∠B=15°∴∠EAC=75°-15°=60°∵∠C=90°∴∠AEC=30°∴AC=AE=×6cm=3cm故选:D【点睛】本题考查了三角形内角和定理,线段垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等,直角三角形中,30°角所对的边等于斜边的一半.4、C【解析】根据三角形的三边关系即可求出BC的范围,再选出即可.【详解】∵AB=2cm,AC=5cm∴BC,即BC,故选C.【点睛】此题主要考查三角形的三边关系,解题的关键是熟知三角形的三边关系:两边之和大于第三边,两边之差小于第三边.5、D【分析】方程组利用代入消元法变形得到结果,即可作出判断.【详解】用代入法解方程组时,把y=1-x代入x-2y=4,得:x-2(1-x)=4,去括号得:,故选:D.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6、B【分析】根据轴对称图形的定义依次进行判断即可.【详解】把某个图形沿某条直线折叠,如果图形的两部分能完全重合,那么这个是轴对称图形,因此第1,2,3是轴对称图形,第4不是轴对称图形.【点睛】本题考查轴对称图形,掌握轴对称图形的定义为解题关键.7、B【详解】可设大正方形边长为a,小正方形边长为b,所以据题意可得a2=49,b2=4;根据直角三角形勾股定理得a2=x2+y2,所以x2+y2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S△=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以,化简得2xy+4=49,式③正确;而据式④和式②得2x=11,x=5.5,y=3.5,将x,y代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B.8、D【分析】根据等腰三角形和三角形外角性质求出BD=DE,求出BC,在Rt△BDC中,由勾股定理求出BD即可.【详解】解:∵△ABC为等边三角形,
∴∠ABC=∠ACB=60°,AB=BC,
∵BD为中线,∵CD=CE,
∴∠E=∠CDE,
∵∠E+∠CDE=∠ACB,
∴∠E=30°=∠DBC,
∴BD=DE,
∵BD是AC中线,CD=x,
∴AD=DC=x,
∵△ABC是等边三角形,
∴BC=AC=2x,BD⊥AC,
在Rt△BDC中,由勾股定理得:故选:D.【点睛】本题考查了等边三角形性质,勾股定理,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出DE=BD和求出BD的长.9、B【分析】根据垂直平分线的性质得到,将的周长表示成的周长加上AC长求解.【详解】解:∵DE是AC的垂直平分线,∴,,∴,∵的周长是16,∴,的周长.故选:B.【点睛】本题考查垂直平分线的性质,解题的关键是掌握垂直平分线的性质.10、C【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】A、由于82+92≠102,不能构成直角三角形,故本选项不符合题意;B、由于1.52+22≠52,不能构成直角三角形,故本选项不符合题意;C、由于62+82=102,能构成直角三角形,故本选项符合题意;D、由于202+212≠322,不能构成直角三角形,故本选项不符合题意;故选:C.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.二、填空题(每小题3分,共24分)11、【分析】从题型可知为”将军饮马”的题型,连接CE,CE即为所求最小值.【详解】∵△ABC是等边三角形,∴B点关于AD的对称点就是C点,连接CE交AD于点H,此时HE+HB的值最小.∴CH=BH,∴HE+HB=CE,根据等边三角形的性质,可知三条高的长度都相等,∴CE=AD=.故答案为:.【点睛】本题考查三角形中动点最值问题,关键在于寻找对称点即可求出最值.12、75°【分析】利用平行线的性质以及三角形的外角的性质求解即可.【详解】解:∵BC∥DE,∴∠FCB=∠E=30°,∵∠AFC=∠B+∠FCB,∠B=45°,∴∠AFC=45°+30°=75°,故答案为75°.【点睛】本题考查三角形内角和定理,三角形的外角的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13、AC=BD或AD=BC.(答案不唯一)【解析】AC=BD或AD=BC都可以.14、【解析】由题意得:2x-7=0,解得:x=,故答案为.【点睛】本题考查的是分式无意义,解题的关键是明确分式无意义的条件是分母等于0.15、ASA【分析】根据确定三角形全等的条件进行判定即可得解.【详解】解:由题意可知:伞柄AP平分∠BAC,∴∠BAP=∠CAP,伞柄AP平分∠EDF,∴∠EDA=∠FDA,且AD=AD,∴△AED≌△AFD(ASA),故答案为:ASA.【点睛】本题考查了全等三角形的应用,理解题意确定出全等的三角形以及全等的条件是解题的关键.16、【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵,,∴,∴∠4=90°−∠3=55°,∵,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.17、【分析】根据新定义运算法则可得:【详解】根据新定义运算法则可得=即,m≠0解得m=故答案为:【点睛】考核知识点:分式运算.理解法则是关键.18、【分析】
【详解】顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即,则周长是原来的;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,则正方形A2B2C2D2的面积为正方形A1B1C1D1面积的一半,即,则周长是原来的;顺次连接正方形A2B2C2D2得正方形A3B3C3D3,则正方形A3B3C3D3的面积为正方形A2B2C2D2面积的一半,即,则周长是原来的;…故第n个正方形周长是原来的,以此类推:正方形A8B8C8D8周长是原来的,∵正方形ABCD的边长为1,∴周长为4,∴按此方法得到的四边形A8B8C8D8的周长为,故答案为.三、解答题(共66分)19、(1),;证明过程见解析(2)成立【分析】(1)要证BQ=AP,可以转化为证明,要证明BQ⊥AP,可以证明∠QGA=,只要证出∠CBQ=∠CAP,∠GAQ+∠AQG=即可证出;(2)类比(1)的证明过程,就可以得到结论仍成立.【详解】(1)BQ=AP,BQ⊥AP,理由:∵EF=FP,EF⊥FP,∴∠EPF=,又∵AC⊥BC,∴∠CQP=∠CPQ=,∴CQ=CP,在和中,,∴(SAS),∴BQ=AP.如下图,延长BQ交AP与点G,
∵,∴∠CBQ=∠CAP,在Rt△BCQ中,∠CBQ+∠CQB=,又∠CQB=∠AQG,∴∠GAQ+∠AQG=∠CBQ+∠CQB=,∴∠QGA=,∴BQ⊥AP,故BQ=AP,BQ⊥AP.(2)成立;理由:∵,∴,又∵,∴,∴CQ=CP,在和中,,
∴(SAS),∴BQ=AP,延长QB交AP于点N,如下图所示:
则,∵,∴,∵在Rt中,,又∵,∴,∴,∴,故,.【点睛】本题考查等腰三角形的性质、全等三角形的性质和判定及三角形的内角和定理等知识,解题的关键是证明三角形全等.20、(1)证明见解析;(2)AB=1.【分析】(1)根据平行线的性质得出∠A=∠C,进而利用全等三角形的判定证明即可;(2)利用全等三角形的性质和中点的性质解答即可.【详解】解:(1)证明:∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=1,∵△ABE≌△CDF,∴AB=CD=1.【点睛】此题考查全等三角形的判定和性质,关键是根据平行线的性质得出∠A=∠C.21、(1)②;(2)4,5;(3)见解析.【分析】(1)根据题意可以判断题目中的各个小题哪个是和谐分式,从而可以解答本题;(2)根据和谐分式的定义可以得到的值;(3)根据题意和和谐分式的定义可以解答本题.【详解】(1)②分式=,不可约分,∴分式是和谐分式,故答案为②;(2)∵分式为和谐分式,且a为正整数,∴a=4,a=﹣4(舍),a=5;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分时,利用和谐分式找到了最简公分母,原式====故答案为小强通分时,利用和谐分式找到了最简公分母.【点睛】本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答.22、(1)见解析;(2)见解析;(3)见解析【分析】(1)分别以A、B为圆心,以大于AB为半径画弧,两弧交于两点,过这两点作直线即可;
(2)根据已知角的角平分线画法,画出即可;(3)作AB=a,作AB的垂直平分线MN,垂足为D,在DM上截取DC=b,连接AC、BC,即可得等腰三角形.【详解】(1)如图所示,直线MN即为所求.(2)如图所示,OC即为所求作的∠AOB的平分线.(3)如图△ABC即为所求.【点睛】本题考查线段垂直平分线和角平分线的画法、作一条直线等于已知直线等知识点,熟悉线段垂直平分线的作法和等腰三角形的判定和性质.能正确画出图形是解题关键.23、且m≠1.【分析】根据(m-1)x2-2mx+m+3=0,方程有两个实数根,从而得出△≥0,即可解出m的范围.【详解】∵方程有两个实数根,∴△≥0;
(-2m)2-4(m-1)(m+3)≥0;
∴;又∵方程是一元二次方程,∴m-1≠0;解得m≠1;∴当且m≠1时方程有两个实数根.【点睛】本题考查了根的判别式以及一元二次方程的定义,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24、见解析【分析】根据等边三角形的性质和等腰三角形的性质得出∠FAG=∠FBG,得到FA=FB,推出FC为AB的垂直平分线,根据等腰三角形底边三线合一即可解题.【详解】∵△BDC和△ACE分别为等边三角形,∴∠CAE=∠CBD=60°,∵AC=BC,∴∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提升VFP考试通过率的攻略试题及答案
- 走向成功2025年税法考试试题及答案
- C语言常见陷阱试题及答案防范
- 解除苹果采购合同协议书
- 2025版高考地理一轮复习第五单元1第一讲营造地表形态的力量夯基提能作业湘教版
- 江苏专用2025版高考地理大一轮复习区域地理第三章江苏乡土地理第40讲江苏省自然和人文概况教案含解析新人教版
- 2025年C语言重点复习试题及答案
- 合同入股终止协议书范本
- 垃圾清理合同协议书模板
- 社会工作者-社会工作综合能力(初级)真题库-14
- 中国城市中英文对照
- 作业治疗学题库第七章
- 医学信息检索与利用智慧树知到答案章节测试2023年杭州医学院
- 并网前设备电气试验、继电保护整定、通讯联调
- 用表格为网页布局教学设计
- 病原微生物实验室生物安全管理手册
- 上消化道出血病人的观察与护理-课件
- 光缆测试报告
- 初中物理教育科学八年级下册第十一章 机械与功《功》教学设计
- 神经病学人卫版习题集题库
- (统编版小学语文教师)语文新课标新旧对比变化
评论
0/150
提交评论