




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市示范中学2024届高三下学期3月考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,若函数有三个零点,则()A.12 B.11 C.6 D.32.下图所示函数图象经过何种变换可以得到的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位3.若,则“”的一个充分不必要条件是A. B.C.且 D.或4.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.5.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.6.集合的子集的个数是()A.2 B.3 C.4 D.87.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为A. B. C. D.8.在中,内角的平分线交边于点,,,,则的面积是()A. B. C. D.9.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为()A. B. C. D.10.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图.根据所给信息,正确的统计结论是()A.截止到2015年中国累计装机容量达到峰值B.10年来全球新增装机容量连年攀升C.10年来中国新增装机容量平均超过D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过11.已知集合,则集合()A. B. C. D.12.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设集合,(其中e是自然对数的底数),且,则满足条件的实数a的个数为______.14.已知集合,,则__________.15.若函数在和上均单调递增,则实数的取值范围为________.16.设是公差不为0的等差数列的前n项和,且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三棱锥P-ABC(如图一)的平面展开图(如图二)中,四边形ABCD为边长等于的正方形,和均为正三角形,在三棱锥P-ABC中:(1)证明:平面平面ABC;(2)若点M在棱PA上运动,当直线BM与平面PAC所成的角最大时,求直线MA与平面MBC所成角的正弦值.18.(12分)已知数列是各项均为正数的等比数列,数列为等差数列,且,,.(1)求数列与的通项公式;(2)求数列的前项和;(3)设为数列的前项和,若对于任意,有,求实数的值.19.(12分)如图,四棱锥中,四边形是矩形,,,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面;(2)求几何体的体积.20.(12分)某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.(1)求1名顾客摸球2次摸奖停止的概率;(2)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.21.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)求直线l的普通方程和圆C的直角坐标方程;(2)直线l与圆C交于A,B两点,点P(2,1),求|PA|⋅|PB|的值.22.(10分)如图,在平面直角坐标系xOy中,已知椭圆C:(a>b>0)的离心率为.且经过点(1,),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方).(1)求椭圆C的标准方程;(2)若△AEF与△BDF的面积之比为1:7,求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
画出函数的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果.【题目详解】作出函数的图象如图所示,令,由图可得关于的方程的解有两个或三个(时有三个,时有两个),所以关于的方程只能有一个根(若有两个根,则关于的方程有四个或五个根),由,可得的值分别为,则故选B.【题目点拨】本题考查数形结合以及函数与方程的应用,考查转化思想以及计算能力,属于常考题型.2、D【解题分析】
根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.【题目详解】设函数解析式为,根据图像:,,故,即,,,取,得到,函数向右平移个单位得到.故选:.【题目点拨】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.3、C【解题分析】,∴,当且仅当时取等号.故“且”是“”的充分不必要条件.选C.4、C【解题分析】
由题意可得面,可知,因为,则面,于是.由此推出三棱锥外接球球心是的中点,进而算出,外接球半径为1,得出结果.【题目详解】解:由,翻折后得到,又,则面,可知.又因为,则面,于是,因此三棱锥外接球球心是的中点.计算可知,则外接球半径为1,从而外接球表面积为.故选:C.【题目点拨】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.5、D【解题分析】
利用的周期性先将复数化简为即可得到答案.【题目详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【题目点拨】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.6、D【解题分析】
先确定集合中元素的个数,再得子集个数.【题目详解】由题意,有三个元素,其子集有8个.故选:D.【题目点拨】本题考查子集的个数问题,含有个元素的集合其子集有个,其中真子集有个.7、B【解题分析】
求得基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,利用古典概型及其概率的计算公式,即可求解.【题目详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,所以乙丙两人恰好参加同一项活动的概率为,故选B.【题目点拨】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.8、B【解题分析】
利用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【题目详解】为的角平分线,则.,则,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面积为.故选:B.【题目点拨】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.9、D【解题分析】
利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【题目详解】《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D.【题目点拨】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.10、D【解题分析】
先列表分析近10年全球风力发电新增装机容量,再结合数据研究单调性、平均值以及占比,即可作出选择.【题目详解】年份2009201020112012201320142015201620172018累计装机容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增装机容量39.140.645.135.851.863.854.953.551.4中国累计装机装机容量逐年递增,A错误;全球新增装机容量在2015年之后呈现下降趋势,B错误;经计算,10年来中国新增装机容量平均每年为,选项C错误;截止到2015年中国累计装机容量,全球累计装机容量,占比为,选项D正确.故选:D【题目点拨】本题考查条形图,考查基本分析求解能力,属基础题.11、D【解题分析】
弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【题目详解】因,所以,故,又,,则,故集合.故选:D.【题目点拨】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.12、B【解题分析】
由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【题目详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【题目点拨】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
可看出,这样根据即可得出,从而得出满足条件的实数的个数为1.【题目详解】解:,或,在同一平面直角坐标系中画出函数与的图象,由图可知与无交点,无解,则满足条件的实数的个数为.故答案为:.【题目点拨】考查列举法的定义,交集的定义及运算,以及知道方程无解,属于基础题.14、【解题分析】
解一元二次不等式化简集合,再进行集合的交运算,即可得到答案.【题目详解】,,.故答案为:.【题目点拨】本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.15、【解题分析】
化简函数,求出在上的单调递增区间,然后根据在和上均单调递增,列出不等式求解即可.【题目详解】由知,当时,在和上单调递增,在和上均单调递增,,
,
的取值范围为:.
故答案为:.【题目点拨】本题主要考查了三角函数的图象与性质,关键是根据函数的单调性列出关于m的方程组,属中档题.16、18【解题分析】
将已知已知转化为的形式,化简后求得,利用等差数列前公式化简,由此求得表达式的值.【题目详解】因为,所以.故填:.【题目点拨】本题考查等差数列基本量的计算,考查等差数列的性质以及求和,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】
(1)设的中点为,连接.由展开图可知,,.为的中点,则有,根据勾股定理可证得,则平面,即可证得平面平面.(2)由线面成角的定义可知是直线与平面所成的角,且,最大即为最短时,即是的中点建立空间直角坐标系,求出与平面的法向量利用公式即可求得结果.【题目详解】(1)设AC的中点为O,连接BO,PO.由题意,得,,.在中,,O为AC的中点,,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直线BM与平面PAC所成的角,且,当OM最短时,即M是PA的中点时,最大.由平面ABC,,,,于是以OC,OB,OD所在直线分别为x轴,y轴,z轴建立如图示空间直角坐标系,则,,设平面MBC的法向量为,直线MA与平面MBC所成角为,则由得:.令,得,,即.则.直线MA与平面MBC所成角的正弦值为.【题目点拨】本题考查面面垂直的证明,考查线面成角问题,借助空间向量是解决线面成角问题的关键,难度一般.18、(1),(2)(3)【解题分析】
(1)假设公差,公比,根据等差数列和等比数列的通项公式,化简式子,可得,,然后利用公式法,可得结果.(2)根据(1)的结论,利用错位相减法求和,可得结果.(3)计算出,代值计算并化简,可得结果.【题目详解】解:(1)依题意:,即,解得:所以,(2),,,上面两式相减,得:则即所以,(3),所以由得,,即【题目点拨】本题主要考查等差数列和等比数列的综合应用,以及利用错位相减法求和,属基础题.19、(1)见解析;(2)【解题分析】
(1)由题可知,根据三角形的中位线的性质,得出,根据矩形的性质得出,所以,再利用线面平行的判定定理即可证出平面;(2)由于平面平面,根据面面垂直的性质,得出平面,从而得出到平面的距离为,结合棱锥的体积公式,即可求得结果.【题目详解】解:(1)∵,分别为,的中点,∴,∵四边形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中点,,连接,,,,则,由于为三棱柱,为四棱锥,∵平面平面,∴平面,由已知可求得,∴到平面的距离为,因为四边形是矩形,,,,设几何体的体积为,则,∴,即:.【题目点拨】本题考查线面平行的判定、面面垂直的性质和棱锥的体积公式,考查逻辑推理和计算能力.20、(1);(2)20.【解题分析】
(1)1名顾客摸球2次摸奖停止,说明第一次是从红球、黄球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值为:0,10,20,30,1.分别求出取各个值时的概率,即可求出分布列和数学期望.【题目详解】(1)1名顾客摸球2次摸奖停止,说明第一次是从红球、黄球、白球中摸一球,第二次摸的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国无阻力轴向补偿器数据监测研究报告
- 2025年中国数码控制箱市场调查研究报告
- 2025-2030年中国亚氯酸钠项目投资风险研究报告
- 2025至2031年中国绒把手记数跳绳行业投资前景及策略咨询研究报告
- 2025至2031年中国绝缘油介电强度自动测定仪行业投资前景及策略咨询研究报告
- 小学一年级语文下册《口语交际:一起做游戏》指导
- 新疆司法警官职业学院《毕业论文写作与作品设计》2023-2024学年第二学期期末试卷
- 2025-2030年中国4,4′行业运行态势及投资风险评估报告
- 新疆伊犁州2025年初三下学期第一次模拟考试语文试题试卷含解析
- 2025-2030年中国TETRA数字集群无线电系统行业发展现状分析及投资前景预测研究报告
- 急救医疗资源整合优化研究
- 《局域网组建》课件
- IDEA-低空经济发展白皮书(2.0)全数字化方案
- 牛津译林7A-Unit3、4单元复习
- 国家义务教育质量监测初中美术试题
- 超声波探伤作业指导书
- 课程思政视域下小学音乐教学策略初探 论文
- 智能高速铁路概论-课件-第一章-世界智能铁路发展-
- 群众性战伤救治技术知识考试题库-下(多选、判断题部分)
- 黑龙江佳木斯旅游介绍PPT模板
- 中国传统文化之中国古代科技PPT
评论
0/150
提交评论