版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年铁岭市重点中学九年级数学第一学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.从一张圆形纸板剪出一个小圆形和一个扇形,分别作为圆锥体的底面和侧面,下列的剪法恰好配成一个圆锥体的是()A. B. C. D.2.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1 B.2 C.﹣1 D.﹣23.由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克元,连续两次上涨后,售价上升到每千克元,则下列方程中正确的是()A. B.C. D.4.点P(3,5)关于原点对称的点的坐标是()A.(﹣3,5) B.(3,﹣5) C.(5,3) D.(﹣3,﹣5)5.已知关于的方程(1)(2)(3)(4),其中一元二次方程的个数为()个.A.1 B.2 C.3 D.46.如图,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A. B. C. D.7.已知在Rt△ABC中,∠A=90°,AB=3,BC=5,则cosB的值是()A. B. C. D.8.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠19.若x1,x2是一元二次方程5x2+x﹣5=0的两根,则x1+x2的值是()A. B. C.1 D.﹣110.如图所示为两把按不同比例尺进行刻度的直尺,每把直尺的刻度都是均匀的,已知两把直尺在刻度10处是对齐的,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,则上面直尺的刻度16与下面直尺对应的刻度是()A.19.4 B.19.5 C.19.6 D.19.7二、填空题(每小题3分,共24分)11.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.12.若,且,则=______.13.关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.14.如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.15.为了解早高峰期间A,B两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A、B两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表:等待时的频数间乘车等待时间地铁站5≤t≤1010<t≤1515<t≤2020<t≤2525<t≤30合计A5050152148100500B452151674330500据此估计,早高峰期间,在A地铁站“乘车等待时间不超过15分钟”的概率为_____;夏老师家正好位于A,B两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从_____地铁站上车.(填“A”或“B”)16.如图,在中,,于点,,,则_________;17.在四边形ABCD中,AD=BC,AD∥BC.请你再添加一个条件,使四边形ABCD是菱形.你添加的条件是_________.(写出一种即可)18.如图,点C是以AB为直径的半圆上一个动点(不与点A、B重合),且AC+BC=8,若AB=m(m为整数),则整数m的值为______.三、解答题(共66分)19.(10分)已知二次函数的图像经过点A(0,3),B(-1,0).(1)求该二次函数的解析式(2)在图中画出该函数的图象20.(6分)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向点D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.(1)求证:;(2)若设AE=x,DH=y,当x取何值时,y有最大值?并求出这个最大值;(3)连接BH,当点E运动到AD的何位置时有?21.(6分)如图,是⊙的直径,是的中点,弦于点,过点作交的延长线于点.(1)连接,求;(2)点在上,,DF交于点.若,求的长.22.(8分)请认真阅读下面的数学小探究,完成所提出的问题(1)探究1,如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,过点D作BC边上的高DE,则DE与BC的数量关系是.△BCD的面积为.(2)探究2,如图②,在一般的Rt△ABC中,∠ACB=90°,BC=,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,请用含的式子表示△BCD的面积,并说明理由.23.(8分)如图,是□ABCD的边延长线上一点,连接,交于点.求证:△∽△CDF.24.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.25.(10分)如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用y=x刻画.(1)求二次函数解析式;(2)若小球的落点是A,求点A的坐标;(3)求小球飞行过程中离坡面的最大高度.26.(10分)解方程:;二次函数图象经过点,当时,函数有最大值,求二次函数的解析式.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据圆锥的底面圆的周长等于扇形弧长,只要图形中两者相等即可配成一个圆锥体即可.【详解】选项A、C、D中,小圆的周长和扇形的弧长都不相等,故不能配成一个圆锥体,只有B符合条件.故选B.【点睛】本题考查了学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.2、C【解析】试题分析:∵一元二次方程x2+px﹣2=0的一个根为2,∴22+2p﹣2=0,解得p=﹣1.故选C.考点:一元二次方程的解3、A【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),先表示出第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于a%的方程.【详解】解:当猪肉第一次提价时,其售价为;当猪肉第二次提价后,其售价为故选:.【点睛】本题考查了求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.4、D【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,横纵坐标的坐标符号均相反,根据这一特征求出对称点坐标.【详解】解:点P(3,5)关于原点对称的点的坐标是(-3,-5),
故选D.【点睛】本题主要考查了关于原点对称的点的坐标特点,关键是掌握点的变化规律.5、C【分析】根据一元二次方程的定义逐项判断即可.【详解】解:(1)ax2+x+1=0中a可能为0,故不是一元二次方程;(2)符合一元二次方程的定义,故是一元二次方程;(3),去括号合并后为,是一元二次方程;(4)x2=0,符合一元二次方程的定义,是一元二次方程;所以是一元二次方程的有三个,
故选:C.【点睛】本题主要考查一元二次方程的定义,即只含有一个未知数且未知数的次数为2的整式方程,注意如果是字母系数的方程必须满足二次项的系数不等于0才可以.6、A【解析】直接利用锐角三角函数关系得出sinB的值.【详解】∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB=故选A.【点睛】此题主要考查了锐角三角函数关系,正确把握定义是解题关键.7、A【解析】根据余弦函数的定义即可求解.【详解】解:∵在△ABC中,∠A=90°,AB=3,BC=5,∴cosB==.故选A.【点睛】本题主要考查了余弦函数的定义,在直角三角形中,余弦为邻边比斜边,解决本题的关键是要熟练掌握余弦的定义.8、C【详解】根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>且k≠1.故选C【点睛】本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9、B【分析】利用计算即可求解.【详解】根据题意得x1+x2=﹣.故选:B.【点睛】本题考查一元二次方程根与系数的关系,解题的关键是熟知一元二次方程两根之和与两根之积与系数之间的关系.10、C【分析】根据两把直尺在刻度10处是对齐的及上面直尺的刻度11与下面直尺对应的刻度是11.6,得出上面直尺的10个小刻度,对应下面直尺的16个小刻度,进而判断出上面直尺的刻度16与下面直尺对应的刻度即可.【详解】解:由于两把直尺在刻度10处是对齐的,观察图可知上面直尺的刻度11与下面直尺对应的刻度是11.6,即上面直尺的10个小刻度,对应下面直尺的16个小刻度,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,因此上面直尺的刻度16与下面直尺对应的刻度是18+1.6=19.6,故答案为C【点睛】本题考查了学生对图形的观察能力,通过图形得出上面直尺的10个小刻度,对应下面直尺的16个小刻度是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】分析:设方程的另一个根为m,根据两根之和等于-,即可得出关于m的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=1.故答案为1.点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.12、12【分析】设,则a=2k,b=3k,c=4k,由求出k值,即可求出c的值.【详解】解:设,则a=2k,b=3k,c=4k,∵a+b-c=3,∴2k+3k-4k=3,∴k=3,∴c=4k=12.故答案为12.【点睛】此题主要考查了比例的性质,利用等比性质是解题关键.13、【分析】方程有两个不相等的实数根,则>2,由此建立关于k的不等式,然后可以求出k的取值范围.【详解】解:由题意知,=36-36k>2,
解得k<1.
故答案为:k<1.【点睛】本题考查了一元二次方程根的情况与判别式的关系:(1)>2⇔方程有两个不相等的实数根;(2)=2⇔方程有两个相等的实数根;(3)<2⇔方程没有实数根.同时注意一元二次方程的二次项系数不为2.14、(-2,0)【解析】由C(0,c),D(m,c),得函数图象的对称轴是,设A点坐标为(x,0),由A.
B关于对称轴对称得,解得x=−2,即A点坐标为(−2,0),故答案为(−2,0).15、B【分析】用“用时不超过15分钟”的人数除以总人数即可求得概率;先分别求出A线路不超过20分钟的人数和B线路不超过20分钟的人数,再进行比较即可得出答案.【详解】∵在A地铁站“乘车等待时间不超过15分钟有50+50=100人,∴在A地铁站“乘车等待时间不超过15分钟”的概率为=,∵A线路不超过20分钟的有50+50+152=252人,B线路不超过20分钟的有45+215+167=427人,∴选择B线路,故答案为:,B.【点睛】此题考查了用频率估计概率的知识,能够读懂图是解答本题的关键,难度不大;用到的知识点为:概率=所求情况数与总情况数之比.16、【分析】根据相似三角形的判定得到△ABC∽△CBD,从而可根据其相似比求得AC的长.【详解】∵,,,∴∠BDC=∠BCA=90°,∠CBD+∠ABC=90°,BC=3,∴△ABC∽△CBD,
∴AC:CD=CB:BD,即AC:=3:2,∴AC=.
故答案为:.【点睛】本题考查相似三角形的判定和性质、勾股定理.17、此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【分析】由在四边形ABCD中,AD=BC,AD∥BC,可判定四边形ABCD是平行四边形,然后根据一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形,即可判定四边形ABCD是菱形,则可求得答案.【详解】解:如图,∵在四边形ABCD中,AD=BC,AD∥BC,
∴四边形ABCD是平行四边形,
∴当AB=BC或BC=CD或CD=AD或AB=AD时,四边形ABCD是菱形;
当AC⊥BD时,四边形ABCD是菱形.
故答案为:此题答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【点睛】此题考查了菱形的判定定理.此题属于开放题,难度不大,注意掌握一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形是解此题的关键.18、6或1【分析】因为直径所对圆周角为直角,所以ABC的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,列出关于BC的函数关系式,再根据二次函数的性质和三角形的三边关系得出的范围,再根据题意要求AB为整数,即可得出AB可能的长度.【详解】解:∵直径所对圆周角为直角,故ABC为直角三角形,∴根据勾股定理可得,,即,又∵AC+BC=8,∴AC=8-BC∴∵∴当BC=4时,的最小值=32,∴AB的最小值为∵∴∵AB=m∴∵m为整数∴m=6或1,故答案为:6或1.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、二次函数的性质,解题的关键在于找出AB长度的范围.三、解答题(共66分)19、(1);(2)详见解析.【分析】(1)根据二次函数的图象经过点A(0,3),B(-1,0)可以求得该函数的解析式;(2)根据(1)中求得的函数解析式可以得到该函数经过的几个点,从而可以画出该函数的图象;【详解】解:(1)把A(0,3),B(-1,0)分别代入,得解得所以二次函数的解析式为:(2)由(1)得列表得:如图即为该函数图像:【点睛】本题考查求抛物线的解析式、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想.20、(1)见解析;(2)当,有最大值;(3)当点E是AD的中点【分析】(1)由同角的余角相等得到∠ABE=∠CBG,从而全等三角形可证;(2)先证明△ABE∽△DEH,得到,即可求出函数解析式y=-x2+x,继而求出最值.(3)由(2),再由,可得,则问题可证.【详解】(1)证明:∵∠ABE+∠EBC=∠CBG+∠EBC=90°∴∠ABE=∠CBG在△AEB和△CGB中:∠BAE=∠BCG=90°,AB=BC,∠ABE=∠CBG∴△AEB≌△CGB(ASA)(2)如图∵四边形ABCD,四边形BEFG均为正方形∴∠A=∠D=90°,∠HEB=90°∴∠DEH+∠AEB=90°,∠DEH+∠DHE=90°∴∠DHE=∠AEB∴△ABE∽△DEH∴∴∴故当,有最大值(3)当点E是AD的中点时有△BEH∽△BAE.理由:∵点E是AD的中点时由(2)可得又∵△ABE∽△DEH∴,又∵∴又∠BEH=∠BAE=90°∴△BEH∽△BAE【点睛】本题结合正方形的性质考查二次函数的综合应用,以及正方形的性质和相似三角形的判定,解答关键是根据题意找出相似三角形构造等式.21、(1);(2).【解析】(1)根据垂径定理可得AB垂直平分CD,再根据M是OA的中点及圆的性质,得出△OAD是等边三角形即可;(2)根据题意得出∠CNF=90°,再由Rt△CDE计算出CD,CN的长度,根据圆的内接四边形对角互补得出∠F=60°,从而根据三角函数关系计算出FN的值即可.【详解】解:(1)如图,连接OD,∵是⊙的直径,于点∴AB垂直平分CD,∵M是OA的中点,∴∴∴∠DOM=60°,又∵OA=OD∴△OAD是等边三角形∴∠OAD=60°.(2)如图,连接CF,CN,∵OA⊥CD于点M,∴点M是CD的中点,∴AB垂直平分CD∴NC=ND∵∠CDF=45°,∴∠NCD=∠NDC=45°,∴∠CND=90°,∴∠CNF=90°,由(1)可知,∠AOD=60°,∴∠ACD=30°,又∵交的延长线于点,∴∠E=90°,在Rt△CDE中,∠ACD=30°,,∴在Rt△CND中,∠CND=90°,∠NCD=∠NDC=45°,,∴由(1)可知,∠CAD=2∠OAD=120°,∴∠F=180°-120°=60°,∴在Rt△CFN中,∠CNF=90°,∠F=60°,,∴【点睛】本题考查了圆的性质、垂径定理、圆的内接四边形对角互补的性质、直角三角形的性质、锐角三角函数的应用,综合性较大,解题时需要灵活运用边与角的换算.22、(1)DE=BC,4.5;(2)【分析】(1)证明△ACB≌△DEB,根据全等三角形的性质得到DE=AC=BC=3,根据三角形的面积公式计算;
(2)作DG⊥CB交CB的延长线于G,证明△ACB≌△BGD,得到DG=BC=a,根据三角形的面积公式计算;【详解】(1)∵△ABC是等腰直角三角形,
∴CA=CB,∠A=∠ABC=45°,
由旋转的性质可知,BA=BD,∠ABD=90°,
∴∠DBE=45°,
在△ACB和△DEB中,,∴△ACB≌△DEB(AAS)
∴DE=AC=BC=3,
∴;故答案为:DE=BC,;(2)作DG⊥CB交CB的延长线于G,
∵∠ABD=90°,
∴∠ABC+∠DBG=90°,又∠ABC+∠A=90°,
∴∠A=∠DBG,
在△ACB和△BGD中,,∴△ACB≌△BGD(AAS),
∴DG=BC=,∴.【点睛】本题考查的是全等三角形的判定和性质,等腰三角形的性质,三角形的面积计算,掌握全等三角形的判定定理和性质定理是解题的关键.23、详见解析【分析】利用平行四边形的性质即可证明.【详解】证明:∵四边形ABCD是平行四边形,∴∠∠,∥,∴∠∠.∴△∽△【点睛】本题主要考查相似三角形的判定,掌握平行四边形的性质是解题的关键.24、(1)60°;(2)证明略;(3)【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;
(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;
(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国热带农业科学院湛江实验站2026年第一批公开招聘工作人员备考题库完整答案详解
- 2026年安徽水利水电职业技术学院单招职业技能笔试备考试题及答案解析
- 2026年黄淮学院招聘高层次人才备考题库完整参考答案详解
- 初中数学解题策略数字教育资源开发与教学创新教学研究课题报告
- 2026年鄂尔多斯市万里路桥集团招聘备考题库完整答案详解
- 2026年普陀区教育系统公开招聘391名教师备考题库及答案详解1套
- 2026年中国人民大学党委保卫部(处)招聘备考题库及答案详解参考
- 2025年非遗木雕非遗非遗市场消费行为报告
- 湛江开发区科技创业服务中心公开招募2026年第一批次科技型企业(项目)的备考题库及参考答案详解一套
- 2026年新安中学(集团)龙田学校招聘若干名购买服务教师备考题库附答案详解
- 2025贵州锦麟化工有限责任公司第三次招聘7人备考笔试题库及答案解析
- 2025广东广州琶洲街道招聘雇员(协管员)5人笔试考试参考试题及答案解析
- 2025国家统计局齐齐哈尔调查队招聘公益性岗位5人笔试考试备考试题及答案解析
- 2025年特种作业人员危险化学品安全作业(化工自动化控制仪表)考试题库及答案
- 2026四川成都高新投资集团有限公司第一批校园招聘35人笔试考试备考试题及答案解析
- 人社局公益性岗位笔试题目及答案
- 2025年华住集团酒店考试题库
- 《建设工程施工合同示范文本》(GF-2022-0201) 核心条款与使用指南
- 媒人介绍相亲协议书
- 2025年超星尔雅学习通《数据分析与统计》考试备考题库及答案解析
- 2025纪检监察应知应会试题库与参考答案
评论
0/150
提交评论