初中化学化学总复习知识点精简总结_第1页
初中化学化学总复习知识点精简总结_第2页
初中化学化学总复习知识点精简总结_第3页
初中化学化学总复习知识点精简总结_第4页
初中化学化学总复习知识点精简总结_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

刃中化学化学总复习知识点精简总结

全面知识

化学总复习知识点精简总结

3.1物质的结构与物质的状态

3.1.1原子结构

1.核外电子的运动特性

核外电子运动具有能量量子化、波粒二象性和统计性的特征,不

能用经典的牛顿力学来描述核外电子的运动状态。

2.核外电子的运动规律的描述

由于微观粒子具有波的特性,所以在量子力学中用波函数中来描

述核外电子的运动状态,以代替经典力学中的原子轨道概念。

(1)波函数中(原子轨道):用空间坐标来描写波的数学函数式,以表

征原子中电子的运动状态。

一个确定的波函数中,称为一个原子轨道。

⑵概率密度(几率密度):变表示微观粒子在空间某位置单位体积

内出现的概率即概率密度。

⑶电子云:用黑点疏密的程度描述原子核外电子出现的概率密度(中

2)分布规律的图形。黑点较密的地方,表示电子出现的概率密度较大,

单位体积内电子出现的机会较多。

n.1.m量子数:波函数中由n.1.m三个量子数决定,三个量子数取值

相互制约:

1)主量子数n的物理意义:

n的取值:n=l,2,3,4……~,

意义:表示核外的电子层数并确定电子到核的平均距离;确定

单电子原子的电子运动的能量。

〃=1,2,3,4,……8,对应于电子层仁L,M,N,•・•

具有相同n值的原子轨道称为处于同一电子层。

2)角量子数i:

i的取值:受n的限制,i=0,1,2……n-1(n个)。

意义:表示亚层,确定原子轨道的形状;对于多电子原子,与〃

共同确定原子轨道的能量。…

1的取值:1,2,3,4

电子亚层:S,P,d,f•…

轨道形状:球形纺锤形梅花形复杂

图3-1

3)磁量子数m:

m的取值:受i的限制,m=0,±1,±2....±i(2i+1个)。

意义:确定原子轨道的空间取向。

i=0,m=0,s轨道空间取向为1;

i=l,m=0,±1,p轨道空间取向为3;

i=2,m=0,±1,±2,d轨道空间取向为5;

n,i相同的轨道称为等价轨道。

s轨道有1个等价轨道,表示为:

P轨道有3个等价轨道,表示为:

d轨道有5个等价轨道,表示为:

一个原子轨道是指n、i、m三种量子数都具有一定数值时的一

个波函数甲(n,i,m),例如甲(1,0,0)代表基态氢原子的波函数。

n、i、m取值合理才能确定一个存在的波函数,亦即确定电子

运动的一个轨道。

n、i、m的取值与波函数:

n=l(l个),i=0,m=0,甲(1,0,0)

n=2(4个),i={0,w=0,中(2,0,0)

1,机=0,±1,+(2,1,0),中(2,1,1),%(2,1,-1)

0,=05(3,0,0)

n=3(9个),i={],加=0,±1+(3,1,0),中(3,1,1),5(3,1,—1)

2,m=o,±l,±2+(3,2,0)+(3,2,1)+(3,2,-1)

+(3,2,2),+(3,2,-2)

n=4(16个)

波函数中数目=n?

在一个确定的原子轨道下,电子自身还有两种不同的运动状态,这

由确定.

4)自旋量子数ms:

1

+-

的取值:m=2

s__1_

~2

意义:代表电子自身两种不同的运动状态(习惯以顺、逆自旋两个

方向形容这两种不同的运动状态,可用tt表示自旋平行,tI表示

自旋反平行。

这样n、I、m、ms四个量子数确定电子的一个完整的运动状态,以

中(n,i,m,ms)表示。

例:甲(1,0,0,+♦),中(1,0,0,二),中⑵1,1,+工),甲(2,1,1,

222

-1)等等。

2

3.原子核外电子分布三原则

(1)泡利不相容原理:一个原子中不可能有四个量子数完全相同的

两个电子.

因为同一个轨道的电子,n、I、m三个量子数已相同,第四个量子

1

H—

数见={2必不相同

~2

由此可得出:一个原子轨道中最多能容纳自旋方向相反的两个电子。

表示为:

根据每层有南个轨道,每个轨道最多能容纳两个电子,由此可得

出每一层电子的最大容量为2n%

(2)最低能量原理:电子总是尽先占据能量最低的轨道。

电子依据轨道近似能级图由低到高依次排布。轨道近似能级图

为:

7s

6s4f5d6p

5s4d5p

4s3d4p

3s3p

2s2p

Is

(3)洪特规则:在n和i值都相同的等价轨道中,电子总是尽可能

分占各个轨道且自旋平行。

如2P3:

AAA

洪特规则特例:当电子的分布处于全充满、半充满或全空时,比较

稳定。

全充满:p6或或F"

半充满:人或小或f7

全空:p°或d°或f°

例如,24CrIS22s22P63s23P63d54sl,半充满比较稳定。

Hl

29CuIS22s22P63s23P63d4S:全充满比较稳定。

(4)核外电子分布式:

原子的核外原子的离子的核外

离子的

电子分布式外层电子分布式电子分布式

外层电子分布式

(价电子构型)

“NoIs22s22P63sl3s'Na=Is'2s22P°

2s22P6

22b222

16Sls2s2p3s3p,3s3p'S:1s22s22P63s23P6

3s23P$

26尸els22s22P63s23P63d64s23d64s2Fe3+:Is22s22P63s23P63d$

3s23P63d5

3

24CrIS22s22P63s23P63d54sl3d54sl24Cr

+:IS22s22P63s23P63d33s23P63d'

C2

29CuIS22s22P63s23P63V4sl3cT4sl29CU

+:IS22s22P63s23P63d93s23P63d,

根据电子的排布,还可判断出轨道中未成对电子的数目。

例:根据Fe原子的价电子构型3dzs2,判断其轨道图中,未配

对的电子数。

TI

3d64s2

可见未成对电子数为4O

(3)原子、离子的电子式及分子结构式

电子式:在元素符号周围用小黑点(或X)来表示原子或离子的最外层

电子的式子。例如:

H.Na..Mg..Ca.:C:

分子结构式:用“一”代表一对共用电子对的分子式。例如:

N三N,0=C=0,C1-C1,H—Cl

3.1.4气体定律

1.理想气体状态方程PV=nRT

式中P:压力,Pa;(1atm=1.01X10'Pa;1atm=760

毫米汞柱)

V:体积,m3;(1m3=103D

T:绝对温度,K;

n:摩尔数,mol;

R:气体常数,R=8.314JKmol1

注意:若压力单位为“kPa”,体积单位对应使用升“L”.

⑴当n一定时,PV、T变则有里1

T、r2

⑵n,T一定时,PM=P2V2

T7V

⑶n,P一定时,才=言

(4)T,P一定时,2=乙

%匕

⑸PV='RT,P=%,

MV

P=2RT,^=mR^=pRT_

MpvP

式中

m:质量,克;

M:摩尔质量,g/mol;

P:气体密度,g/m:,;

实际气体在高温低压下,接近理想气体。

例1:已知在l.OXlOTa,27°C时,0.6克的某气体占0.5升,试求此

气体的分子量.

3

解:m=0.6g,T=273+27=300K,V=0.5升=0.5X10.m,

据理想气体状态方程M=蟠=°.6X8.314X30。=299/板/

PVl.OxlO5x0.5xl0-3

例2.已知10°C例水的蒸汽压为1.227kPa,在10°C>101。3kPa下,

于水面上收集到1.5L某气体,则该气体的物质量为多少mol?

PV_(101.33-1.227)x1.5

解:=6.38x10-2(加。/)

~RT~8.314x(273+10)

2.分压定律

⑴分压:气体混合物中每一种气体的压力,等于该气体单独占有与混

合气体相同体积时所产生的压力。

⑵道尔顿分压定律:适于各组分互不反应的理想气体。

1)气体混合物总压力等于混合物中各组分气体分压的总和。

P.LP,\+PB+……

2)混合气体中某组分气体的分压,等于总压力乘以该组分气体的摩尔

分数。

Pjn'P以=X『总区ngPJP总

"总〃总V&V&

分压定律可用来计算混合气体中组份气体的分压、摩尔数或在给定

条件下的体积。

例:有一混合气体例2、82、02)其总压力为101.325kPa,此气体的

组成为:N225%>C0215%>0260%(体积百分比),试计算混合气体中各

组分的分压。

解:PN2=P总X摩尔分数=P总义体积分数=10L325X25%=25.33kPa;

PC02=101.325X15%=15.20kPa;

P02=101.325X60%=60.80kPa;

3.2.1溶液浓度

1.质量分数(%)=溶质的质量(g)xioo%

溶液的质量(g)

2.物质的量浓度(C)=溶质的物质的量(机。"mol,dmmol.dnT

溶液的体积(dmD

,溶质的物质的量(mol)

3.质量摩尔浓度(m)=一溶剂的质量(kg)一,mol.kg

4.摩尔分数(x)=溶质(或溶剂)的物质的量

溶质的物质的量(加。/)+溶剂的物质的量(加。/)

3.2.2稀溶液的通性

1.溶液的蒸汽压下降

(1)蒸汽压(饱和蒸汽压)P°:在一定温度下,液体和它的蒸汽处

于平衡时,蒸汽所具有的压力。

试验现象:一封闭钟罩中放一杯纯水A和一杯糖水B,静止足够长时

间发现,A杯变成空杯,B杯中水满后溢出。此试验证明:溶液的蒸汽

压总是低于纯溶剂的蒸汽压,其差值称为溶液的蒸汽压下降(AP)°

2)拉乌尔定律:在一定温度下,难挥发的非电解质稀溶液的蒸汽压

下降(AP)和溶质(B)的摩尔分数成正比。

AP=〃Bp。

(2)溶液的的沸点上升和凝固点下降

1)沸点:液相的蒸汽压等于外界压力时的温度。

2)凝固点:液向蒸汽压和固相蒸汽压相等时的温度。

3)汽化热:恒温恒压下,液态物质吸热汽化成气态,所吸收的热量

称为汽化热。

试验证明:溶液的沸点总是高于纯溶剂的沸点;溶液的凝固点总是低

于纯溶剂的凝固点。

利用凝固点下降的原理,冬天可在水箱中加入乙二醇作为防冻剂。

4)拉乌尔定律:难挥发非电解质稀溶液的沸点上升(△£)和凝固

点下降(△()与溶液的质量摩尔浓度(m)成正比。

ATb=kbm△Tf=kfm

kb:溶剂的摩尔沸点上升常数;k,:溶剂的摩尔凝固点下降常数.

拉乌尔定律可用来计算溶液的沸点、凝固点或溶质的摩尔质量。

例:将18.0g葡萄糖C6Hl溶于100.0g水中,计算此溶液的凝固点和

沸点。

解:葡萄糖的摩尔质量为180.0g,其质量摩尔数浓度为:

J8.0

加=侬@*1000=1.000加0//修;水的摩尔沸点上升常数k=0.52

100.0b

△Tb=kbm=0.52X1.000=0.52°C;因此溶液的沸点

为:100+0.52=100.52°C;

水的凝固点下降常数k「=1.85,

△Tf=kfm=l.85X1.000=1.85°C;因此溶液的凝固点为:0T.85=T.85

(3)渗透压

1)半透膜:动物的肠衣、细胞膜、膀胱膜等只允许溶剂分子透过,而

不允许溶质分子(或离子)透过的膜称半透膜.

2)渗透现象:溶剂透过半透膜而浸入溶液的现象.

若在溶液的液面上施加一定的压力,则可阻止溶剂的渗透.为了使渗

透停止必须向溶液液面施加一定的压力.

3)渗透压(冗):为维持被半透膜所隔开的溶液与纯溶剂之间的渗透

平衡而需要的额外压力。

4)渗透压的规律:当温度一定时,稀溶液的渗透压和溶液的摩尔浓

度。成正比;当浓度一定时,稀溶液的渗透压R和温度T成正比。

冗v=nRT五=cRT

渗透压的规律可用来计算溶液的渗透压和溶质的摩尔质量。

溶液的蒸汽压下降、沸点上升、凝固点下降和渗透压这些性质,

与溶质的本性无关,只与溶液中溶质的粒子数有关,称为溶液的依数

性。

(4)说明:电解质溶液,或者浓度较大的溶液也与非电解质稀溶液一

样具有溶液蒸汽压下降、沸点上升、凝固点下降和渗透压等依数性.但

是,稀溶液定律所表达的这些依数性与溶液浓度的定量关系不适用于

浓溶液和电解质溶液。对于电解质稀溶液,蒸汽压下降、沸点上升、

凝固点下降和渗透压的数值都比同浓度的非电解质稀溶液的相应数

值要大。

对同浓度的溶液来说,沸点高低或渗透压大小顺序为:

1)A?B或AB2型强电解质溶液〉AB型强电解质溶液>弱电解质溶液〉

非电解质溶液

对同浓度的溶液来说,蒸汽压或凝固点的顺序正好相反:

2)A2B或AB2型强电解质溶液VAB型强电解质溶液V弱电解质溶液V

非电解质溶液

例1,将质量摩尔浓度均为0.10mol•kg-1的BaCh,HC1,HAc,蔗

糖水溶液的粒子数、蒸气压、沸点、凝固点和渗透压按从大到小次序

排序:

解:按从大到小次序排序如下:

粒子数:BaC12-HC1->HAc->蔗糖

蒸气压:蔗糖一HAc一HC1-BaC12

沸点:BaC12-HC1->HAc一蔗糖

凝固点:蔗糖fHAcfHC1fBaC12

渗透压:BaC12fHC1-HAc-*蔗糖

例2,下列水溶液蒸气压及凝固点的高低顺序为:

0.Imolkg_l蔗糖>0.Imolkg-lHAc>0.lmolkgTNaCl>0.Imol

kg-lCaC12

3.2.3可溶电解质单相电离平衡

+

1.水的电离平衡:H20(i)=====H(aq)+OH-(aq)

+-,4

(1)水的离子积:Krt=C(H)-C(OH)25°CKwW=1.0X10

例,在0.lOOOmol.dm3HCl溶液中,C(H+)=O.lOOOmol.dm_3,C(H+)*C(OH

")=心

l.OxlQ-14

C(OH­)==l.Ox10mol.dm?

0.1000

(2)pH值:pH=-lg{C(H+)},pOH=-lg{C(OH-)},

pH+pOH=l4

例,0.lOOOmol.dm:iHCl溶液,pH=l,pOH=14-l=13

2.酸碱质子理论

⑴酸:凡能给出H'的物质称为酸。

⑵碱:凡能接受H*的物质称为碱。

一个酸给出质子变为其共枕碱,一个碱给出质子变为其共枕酸.

HA=====H'+A-

共胡酸共飘碱

例如,共辗酸碱对:HAc—NaAc、HF—NH,F、NH4C1—NH3>H2CO3—HCO3">

-2

HC03—C03">

HzPOJ—HPCV一等。

有的物质既可作为酸给出质子,又可作为碱得到质子,因此具有两性。

如,

HC(V、H2POf>HP(V一等。

3.一元弱酸的解离平衡:如,HAc(aq)=====H+(aq)+Ac^(aq)

弱酸的解离常数:K=C^(H+).C^(AC-)

C0%HAc)

若弱酸比较弱,(V10-4则:若时)七疸五;

解离度a=已解离的溶质量x100%,cRH*)=ca;

解离前溶质的总量

HAc(aq)=====H+(aq)+Ac-(aq)

平衡浓度/mol•dm'c-cacaca

若弱酸比较弱,K,产ca2

a%”…….称溶液的稀释定律

C酸

说明:

(1)(越大则酸性越强。(只与温度有关,在一定温度下,(为一常

数不随浓度变化而变。

(2)在一定的温度下,解离度a大小可随浓度。而变,溶液稀释时,

浓度c下降,则解离度a升高;

(3)稀释虽然增加了解离度,但由于体积增大,总浓度却减少,一般,

解离度增大的程度比浓度减少的程度要小的多,因此总的说来,溶液

稀释,H'降低.

例1.求0.lOOmol.dm3HAc溶液的PH值。(%=1.8X10-5)

解:(H)y』K,C检=71.8X10-5X0.100=1.34X10-3mol.dm-3

pH=2.88

例2.某温度时,已知0.lOOmol.dm3HCN的电离度为0.010%,则该

温度时,HCN的解离常数Ka是多少?

解:Ka=ca2=Q.100X(0.010%)2=1.00X10-9

-

4.一元弱碱的解离平衡:如,NH3(aq)+H20(i)=====NH?(aq)+0H

(aq)

弱碱的解离常数:除―

eq

C(NH3)

若弱碱比较弱,KbVIOT则:

T(0H”际

1(H+)=K“

Ceq(OH)

例:求0.lOOmol.dm,氨水溶液的PH值。(&=1.8><10-5)

解:Ceq(OH-)=V0.100xl.8xl0-5=\.Mx\Q-3moLdm^

Ceq(H+)="=QI01.=7.46X10-12/MO//Z

Ceq(OH)1.34x10

PH=n.13

5.多元弱酸解离平衡:

多元弱酸碱二级解离往往比一级解离弱得多,可近似按一级解离处理。

如,

+--8

H2S(aq)=H(aq)+HS(aq),Ka,=9.1X10

HS-(aq)=H+(aq)+S2-(aq),Aa,=l.1X10~12

心|>>心2,忽略二级解离,按一级解离处理:

因4(H)心cRHSl,根据二级解离平衡,故滑£2-)七侬

6.盐类水解平衡及溶液的酸碱性

⑴强碱弱酸盐的水解:强碱弱酸盐水解生成弱酸和强碱,溶液呈碱

性。

-

例如NaAc水解:AC-+H20=HAC+0H

⑵强酸弱碱盐的水解:强酸弱碱盐水解生成弱碱和强酸,溶液呈酸

性。

++

例如NH4cl水解:NH4+H2O=NH3.H20+H

⑶弱酸弱碱盐水解:水解生成弱酸和弱碱,溶液酸碱性视弱酸Ka和

弱碱Kb相对强弱大小。

例如NH4Ac水解溶液呈中性:NH4AC+也0=NH3.H20+HAc

⑷强酸强碱盐水解:溶液呈中性。如NaCl溶液,pH=7。

7.缓冲溶液

(1)同离子效应:在弱电解质溶液中,加入与弱电解质具有相同离

子的强电解质,使弱电解质的解离度降低,这种现象叫做同离子效应。

在弱酸的溶液中,加入该酸的共胡碱,或在弱碱的溶液中加入该碱的

共辗酸,则弱酸或弱碱解离度降低。

例如,在HAc溶液中加入NaAc,使HAc解离平衡向左移动,即

HAc(aq)=====H+(aq)+AC-(aq)

—AC-(加入NaAc),从而使HAc解离

度a降低(解离常数论不变),H,浓度降低,溶液pH值升高。

同理,在氨水溶液中加入氯化镂,增加NH屋浓度,使氨水解离度降低,

降低,溶液pH值升高。溶液pH值降低。

(2)缓冲溶液:由弱酸及其共辗碱(如,弱酸与弱酸盐)或弱碱及其

共胡酸(如,弱碱与弱碱盐)所组成的溶液,能抵抗外加少量强酸、

强碱或稍加稀释而使本身溶液pH值基本保持不变,这种对酸和碱具

有缓冲作用的溶液称缓冲溶液。

说明:缓冲溶液的缓冲能力是有限的,当加入大量的酸碱时,溶液的

pH值将发生变化.

3)缓冲溶液种类:

a.弱酸一弱酸盐:如HAc-NaAc,过量的弱酸和强碱.如过

量的HAc和NaOH混合,反应后,过剩的HAc和生成的NaAc组成缓冲

溶液。

b.弱碱一弱碱盐:如NH3—NH4CI;过量的弱碱和强酸.如过量的

NH3.H20和HC1混合,反应后,过剩的NH3和生成的NH4cl组成缓冲

溶液。。

C.多元酸一酸式盐,多元酸的两种不同的酸式盐:如H2c。3—NaHC03,

NaHC03—Na2cO3;NaH2PO4—Na2HPC)4.

4)缓冲溶液pH值计算:

c(共规酸)二£,

CS(〃+)=K“

C(共轨碱)-uC„

C(共拢酸)c

pH=Pk「lg=pK—gU

C(共聊碱)

C(共辄碱)

Ce"(OH-)=KJ,

hC(共辄酸)q

C(共辗碱)=pK〃Tg吴

pOH=pK「lg

C(共加酸)

其中,“=Tg{a;,产-迨4

例1.将100ml0.20mol.dm3HAe和50ml0.20mol.dm3NaAc混合,

求混合后溶液pH值.

已知HAc的解离常数Ka=1.76X10f

解:混合后:

100x0.20

CHAc=OA33ntol.dm~3

150

CNaAc=50XS2。=0.067moldm-3

NaAc150

pH=pK,-\g=-lgl.76xl0-5-lg=4.75-0.30=4.45

C.0.067

例2.将100ml0.20mol.dm3HAc和50ml0.20mol.dm-3NaOH混合,

求混合后溶液pH值.

已知HAc的解离常数Ka=1.76X10T

解:混合后,剩余HAc浓度为:

C「=-(-1-0-0---5-0-)-x-0-.-2-0=0「.1仆67moI.dm-3

HAc150

HAc和NaOH反应后生成的NaAc浓度为:

CN七=——~———=0.061mol.dm'

Na11AAt150

p//=pK,-lg+=-lgl.76xlO-5_lg盥=4.75

CNaAc0967

例3.将100ml0.20mol.dm舒瓦和50ml0.20mol.dm3例4cl混合,

求混合后溶液pH值.

已知Mt的解离常数4=L76X10T

解:混合后:

=100x0.20=0J33加。/.加n

NHi150

3

CNH4CI==0.067mol.dm~

pOH=pK117g舁工=-lg1.76xIO"_1g需=4.45

Jv4a。.。67

pH=14-pOH=14-4.45=9.55

例4.将100ml0.20mol.dm%也和50ml0.20mol.dm3NaOH混合,

求混合后溶液pH值.

已知阳3的解离常数4=1.76Xl(r

解:混合后,剩余NH3浓度为:

「(100-50)x0.20

C=-------------=0.06/moldm_3

喉1VW150

NH:,和NaOH反应后生成的NH4cl浓度为:

50x0.20

c=6.067moidm"

4a150

0.067

=4.75

0.067

pa=14-pOH=14-4.75=9.25

(4)缓冲溶液的配制:当组成缓冲溶液的共辗酸碱对的浓度相当时,

即当火二G时,缓冲溶液缓冲能力最大,此时夕〃引,此即为选择缓冲

溶液的原则。

例如,配制pH=5左右的缓冲溶液,可选HAc—NaAc混合溶液(a=4.74);

配制pH=9左右的缓冲溶液,可选NH:—NH.C1混合溶液

(才9.26);

配制pH=7左右的缓冲溶液,可选NaHFOLNazHPOi混合溶液

(<32=7.20)o

一般认为,当缓冲对的浓度比在0.1和10之间才具有缓冲作用,

缓冲溶液的缓冲范围:pH=a土1

3.2.4难溶电解质的多相解离平衡

1.难溶电解质的沉淀溶解平衡

难溶电解质的沉淀溶解平衡:

A„Bra(s)==nA""(aq)+mB"(aq)

Qra+nqnM

(1)溶度积(常数):Ksp(AnBm)={c(A)}{c(B-)}

溶度积Q在一定温度下为一常数.

如,AgCl(s)=====Ag+(aq)+Cl(aq)

eq+eq7

25℃,KSP(AgCl)={c(Ag)}.{c(Cr)}=1.77X10

Ksp(CaF2)=cICa2+).{/■)『=3.4X10”

2+

Ks.,{Mg(0H)2}=c'(Mg).{J"(or)}Ji.8X10

(2)溶解度s(mol.dm-)与溶度积Ksp的关系:

1)溶解度s:每dn?水溶液中含溶质的摩尔数,mol.dm-%

2)溶解度s与溶度积夕的关系:

对于AB型沉淀:如AgCKAgBr、AgKCaCO3^CaSO1等。

2+2-

CaCO:i(s)=Ca(aq)+CO3(aq)

平衡浓度/mol,dm3ss

Asp(CaCO3)=s,s=y[K^

对于A2B或AB2型沉淀:如Ag2CrO„Mg(OH)乞等。

Ag2CrO4(s)=2Ag+(aq)+CrO/(aq)

平衡浓度/mol,dm32ss

Asp(Ag2Cr0i)=(2s)2s=4s,

对同一种类型的沉淀,溶度积Ksp越大,溶解度S越大;对不同类型

的沉淀,通过计算S比较溶解度的大小。

4-3

例1.25°C时,例酸银(Ag2CrO4)的溶解度为1.31X10mol.dm,求其

溶度积.

+2

解:Ag2CrO4(s)=2Ag(aq)+CrO4(aq)

平衡浓度/mol•dm32ss

4312

Asp(Ag2CrO4)-(2s)2s=4$3=4X(1.31X10)=9.0X10-

例2.25°C时,AgCKAgzCrOi的溶度积分另U为L56X10\9.0X10<2

,问其溶解度何者为大?

解:AgCl溶解度为:S=7^7=31.56x10Ttl=1.25x10-^0/加-3

AgaCrO1的溶解度为:Fj粤=V9.0xW12=1.31xl()Tmoldm3

可见溶解度大小为:Ag2CrO,,>AgCl

(3)溶度积规则:判断沉淀的生成和溶解。

溶液中,离子浓度的乘积:Q={C(Am+)}n{C⑻一)}m

cqncqm

溶度积:X/AnBm)={C(A")}{C(BD}

若Q〈原,不饱和溶液,无沉淀析出或沉淀将溶解;

Q=&.,饱和溶液,沉淀和溶解达到平衡;

Q>&p,过饱和溶液,有沉淀析出

如,在FeS的饱和溶液中,Q=&,加入盐酸后,由于S2-+2f=H2s

(g),降低S2-浓度,使Q<&,以致FeS沉淀溶解。

注意:

1)Q为任意状态溶液离子浓度如起始浓度以计量系数为指数的乘积;

2)若有几种沉淀,先满足Q=1者,先沉淀;

3)沉淀完全(离子浓度〈10-6)不等于离子全部沉淀.

例:将0.lOmoldm3Mgek溶液与0.lOmoldm3氨水,问溶液能否生成

12

Mg(0H)2沉淀?已知Asp[Mg(0H)2]=5.61x10;氨水4=1.77X1(T

解:混合后,

C(Mg2+)=罟=Q.050mo/d姆"

3

C(NH})=竿=0.050,noWm-

c(OH)=J%.=V1.77x10-5x0.050=9.4xmol.dm-3

Q=c(Mg2+).{c(0H-)}-0.050x(9.4X10,}2=4.42x108

QMg(0H)2}=L8X10"

Q>4.,故有沉淀析出.

(4)同离子效应:在难溶电解质溶液中,加入与难溶电解质具有相

同离子的易溶电解质,可使难溶电解质溶解度降低,这种现象叫做同

离子效应。

例如,在AgCl溶液中,加入NaCL使AgCl溶解度下降。

3.3周期

3.3.1原子核外电子分布和元素周期系

元素周期表是元素周期系的体现,元素周期表由周期和族组成。

1.每周期元素的数目=相应能级组所能容纳的最多电子数

周期能级组元素数目

11s22

22s22P68

33s3p8

44s23d'°4p618

55s24d105p618

66s24f"5d106p632

77s25fM6d'°........未完成

2.元素在周期表中的位置和原子结构的关系

(1)周期数=电子层数

主族和IB,HB的族数=最外层电子数

(2)族数0由一丫1旧族的族数="S+(〃-l)d电子数

零族的最外层电子数=2或8

vin族的〃s+(〃一1"电子数=8-io

知道元素在周期表中的位置(哪一周期、哪一族)就可写出原子的

电子分布式和外层电子分布式,反过来也一样。

例1.有一元素在周期表中属于第4周期第VI主族,试写出该元素

原子的电子分布式和外层电子分布式。

解:根据该元素在周期表中的位置可直接写出该元素的外层电子分布

式:

4s24P4(第4周期第6主族)

再根据外层电子分布式推出完整的电子分布式:

Is22s22P63s23P63dzs24P4

例2.已知得的外层电子分布式4d55s;指出该元素在周期表中所属

的周期数和族数。

解:周期数=5(层数=5)

族数=VHB族(ns电子+(n-1)d电子数=2+5=7)

(3)元素在周期表中的分区

根据原子的外层电子构型可将元素分成5个区:

族数IA,IIAIIIB-VIIB,VIIIIB,IIIIIA-VIIA

B

外层电子ns1-2(n-1)d1-8ns2(n-l)d10ns2np1-6

构型ns1-2

分区S区d区ds区p区

族主族副族+丫111=过渡元素主族

f区=翎系+钢系元素

例3.试分别指出例1中34号元素和例2中铝元素在周期表中所属

的分区。

解:根据34号元素外层电子分布式4s24P)得知该元素属p区。根

据铝元素的外层电子分布式4d55s2,得知该元素属d区。

3.3.2元素性质的周期性递变

1.金属性和非金属性

(1)同一周期:从左一右,原子半径逐渐减少,非金属性增强.

金属性减弱,非金属性增强、

z,增多,原子半径曜示*

(2)同一族:

主族元素:从上一下,原子半径逐渐增大,金属性增强

过渡元素:过渡元素:从下一上金属性增强.

2.元素的电离能、电子亲合能和电负性

(1)元素的第一电离能:基态的气态原子失去一个电子形成+1价气态

离子时所吸收的能量。乂(气)-6=乂+(气)。用于衡量单个原子失去

电子的难易程度。

第一电离能越大,原子越难失去电子;数值越小,原子越易失去电子。

⑵元素的电子亲合能:基态的气态原子获得一个电子形成一1价气

态离子时所放出的能量。X(气)+e=X-(气)。用于衡量单个原子获

得电子的难易程度。

电子亲合能越大,原子越容易获得电子;数值越小,原子越难获得电

子。

(3)元素电负性:用于衡量原子在分子中吸引电子的能力。

电负性越大,吸引电子的能力大,元素的非金属性越强;电负性越小,

元素的金属性越强。

同一周期自左向右,电负性值增大,非金属性增强,金属性减弱;同一

族自上向下电负性逐渐减少.

金属元素的电负性值<2.0(除粕系和金),非金属元素的电负性值>

2.0(除Si为1.8外)。

3.3.3氧化物及其水合物的酸碱性递变规律

1.氧化物及其水合物的酸碱性一般规律

(D同周期元素最高价态的氧化物及其水合物,从左到右酸

性递增,碱性递减。以第四周期为例:

碱性增强一

KQHCa(OH)jSC(OH)

8Ti(OH)4

破性强减性缄性两性

HVOHCrO或HCrO

324xx:HMnO4

酸性弱酸性中盘酸性强

一酸性增强

碱性增强*—

CuOHZn(OH)

tGa(OH),Ge(OH)4H3AsQ4H2SeO4

碱性两性两性两性略偏激性酸性弱酸性强

一酸性增强

(2)同族元素相同价态的氧化物及其水合物,自上而下大致

酸性减弱,碱性增强。例如

MZn(OH兀两性

SCd(OH)e酸性很弱,主要呈碱性

强〜Hg(OH),磁性

(3)对于同元素不同价态的氧化物及其水合物,高价态的酸

性比低价态的要强。例如:

CrOCr2O,CrO,

破性两性酸性

一酸性增强

3.4化学反应方程式,化学反应速率与化学平衡

3.4.1化学反应方程式的写法、配平、计算

1.化学反应方程式的写法与配平:把参加化学反应的反应物的分子

式或离子式写在左边,生成物的分子式或离子式写在右边,根据反应

物和产物原子总数和电荷总数均相等的原则配平反应方程式。

如,NaC03+HCl=NaCl+C02+H20;2Ca(OH)2+2S02+02=2CaS0,

+2H2。

2.化学反应中的有关计算:对于已配平的化学反应,参加反应的各物

质的物质量(n:摩尔数)之比等于其化学计量系数之比。

aA+bB=gG+dD

a:b=nA:nB,nA=£nB

b

3.4.2反应热吸热放热热化学反应方程式的写法

1.反应热:化学反应时所吸收或放出的热叫做反应的热效应,简称

反应热。

以符号q表示。

吸热,q>0;放热q<0。

2.热化学反应方程式的写法

(1)热化学反应方程式:表明化学反应方程式和反应热3)关系的方

程式。

⑵热化学反应方程式的书写:

1)标明温度和压力:T=298.15k,P=101.325kPa可省略。

2)右下角标明物质聚集状态:

气态:g

液态:i

固态:s

溶液:aq

3)配平反应方程式:物质前面的计量系数代表物质的量,可为分数。

4)标明反应热:q〈0:放热,q>0:吸热,单位:kjmol-'

-1

例:C(s)+02(g)=C()2(g);q=-393.5kjmol

3.4.3反应方程式与反应热效应的关系及计算、物质标准摩尔生成

焰、反应的焙变与计算

1.热力第一定律

热力第一定律:当封闭体系状态发生变化时,其反应系统内能的变化

量(△u)等于热(q)和功(w)代数和。

△u=q+w

⑴恒容过程:在恒容不作非体积功条件下,△u=q-

即反应中系统内能的变化量(△□在数值上等于等容热效应必。

⑵恒压过程:在恒压,只作体积功的条件下,

即反应的熔变AH在数值上等于其等压热效应。

因此,若反应在等压条件下,可用反应的焰变AH表示反应热效应,

△H<0放热;△H>0吸热。

2.反应热效应的理论计算

(1)盖斯(Hess)定律:在恒容或恒压条件下,化学反应的反应热

只与反应的始态和终态有关,而与变化的途径无关。

推论:热化学方程式相加减,相应的反应热随之相加减

若,反应(3)=反应(1)土反应(2)

则,△%=△小土

-1

例:(1)C(s)+O2(g)=CO2(g);AH1=-393.5kjmol

-1

(2)C0(g)+l/202(g)=C02(g);AH2=-283.0kjmol

则反应(1)—(2)

得反应(3)C(s)+l/202(g)=C0(g);AH3

故△H3=Z^H1—ZXH2=((—393.5)一(一283.0))

=—110.5kjmol-1

注意:

1)方程式乘以系数,相应反应热也应乘以该系数.如,

1

2C(s)+202(g)=2C02(g);AH=—787kjmol

因此,反应(3)=2(1)±3(2),则△H3=2/\HI±3Z\H2

2)正逆反应的反应热绝对值相等,符号相反。如,

1

C02(g)=C(s)+02(g);AH=393.5kjmol

(2)反应的标准摩尔熔变△rH「的计算

1)标准条件

对于不同状态的物质,其标准的含义不同:

气态物质:指气体混合物中,各气态物质的分压均为标准压力P°oP"

=100kPa

溶液中水合离子或水合分子:指水合离子或水合分子的有效浓度为标

准浓度c\

C,,=lmol.dm3

液体或固体:指纯液体或纯固体。

2)标准状态:反应中的各物质均处于标准条件下称该反应处于标准状

态。以“0”表示。

3)物质的标准摩尔生成焙:在标准状态下由指定单质生成单位物质量

(Imol)的纯物质时反应的焰变称该物质标准摩尔生成焰。以

(298.15K)表示。单位kjmolf

规定:指定单质标准摩尔生成焰为零。△出「(单质,298.15K)=0,

如,△刊「(乂,g,298.15K)=0;△,H/(Zn,s,298.15K)=0

-1

例,已知反应2H2(g)+O2(g)=2H2。(i),△rHm°=—570kjmol,

求液态水的标准摩尔生成熔。

解:△■「(比0,I,298.15K)=^^=』=280AJMO/T

22

4)反应的标准摩尔焙变「的计算

对于反应:aA+bB=gG+dD

0

△rH/(298.15K)={gAfHra(G,298.15K)+dAfH/(D,298.15K)}-

-1

<aA.H/(A,298.15K)+bArHm°(B,298.15K)};kjmol

例,已知在标准压力和298.15K时CO(g)和H20(g)的标准摩尔生成培

分别为T10.4KJmol-l和-241.7KJmol-l,求生产水煤气反应的

C(S)+H20(g)=C0(g)+H2(g)的标准摩尔焙变

n

解:ArHm(298.15K)={AfHm°(CO,g,298.15K)+ArH/(H2,g,

298.15K))-

{AfH/(C,s,298.15K)+A(Hm°(H,0,g,298.15K)}

={(-110.4)+0)-{0+(-241.7)}=+131.3KJmol-1

5)说明:反应的焙变基本不随温度而变。即△H(T)心△H(298.15K)

3.4.4牖物质的标准摩尔牖热力学第三定律物质的牖值大小规律

反应的标准摩尔燧变及计算

1.增

(1)燧:是系统内物质微观粒子的混乱度(或无序度)的量度.符号S.

牖是状态函数。

炳值越大,系统混乱度越大。

(2)热力学第三定律:在绝对零度时,一切纯物质的完美晶体的烯值

为零,即S(OK)=O.

(3)物质的标准摩尔烯:单位物质量的纯物质在标准状态下的规定熠

叫做该物质的标准摩尔烯,以表示。单位J.moir.K:

(4)物质焙值的大小,有如下规律:

1)对同一物质而言,气态时的燧大于液态时,而液态时的燧又大于固

态.即Sg>S,>Ss.

9

如,S1(H2。,g,298.15K)>Sm(H20,i,298.15K)

2)同一物质,聚集状态相同时,增值随温度升高而增大.即S低温

如,S\(Fe,s,500K)>S°m(Fe,s,298.15K)

3)当温度和聚集状态相同时,结构较复杂(内部微观粒子较多)的物

质的嫡值大于结构简单的。即S(复杂分子)>S(简单分子)。

如,S\(C2HC,g,298.15K)>S"„,(CH1,g,298.15K)

⑸反应的标准摩尔焙变△,.8/

对于反应:aA+bB=gG+dD

△,.Sra°(298.15K)={gSra°(G,298.15K)+dSm"(D,298.15K)}-{aS/

(A,298.15K)+bSj(B,298.15K));J.moF1

说明:反应的熠值基本不随温度而变。即AS(T)^AS(298.15k)

3.4.5吉布斯函数吉布斯函数变反应方向(自发性)的判断

1.吉布斯函数:G=H-TS,为一复合状态函数

2.吉布斯函数变:AG=AH-TAS

3.反应方向(自发性)的判断:

对于恒温、恒压不作非体积功的一般反应,其自发性的判断标准为:

△G<0反应正向自发;

△G=0平衡状态;

△G>0反应逆向自发,正向非自发。

考虑AH和AS两个因素的影响,分为以下四种情况:

(1)AH<0,AS>0;AGCO正向自发

(2)AH>0,AS<0;AG>。正向非自发

(3)AH>0,AS>0;升高至某温度时AG由正值变为负值,高温

有利于正向自发

(4)AH<0,AS<0;降低至某温度时AG由正值变为负值,低温

有利于正向自发

4.反应自发进行的临界温度为:丁=也

△s

3.4.6化学反应速率的表示质量作用定律速率方程式反应级数

1.化学反应速率的表示

⑴化学反应速率(反应速率)U为:u=vj立"

dt

其中,VB:物质B的化学计量数,反应物取负值,生成物取正值。

续:反应随时间引起引起的物质B的浓度的变化率。

(2)对于反应:aA+bB=gG+dD

反应速率U=——dc(4)———J.dc(B)—J_dc(G)=+J_dc(D)

adtbdtgdtddt

例反应N+3H2=2NH3

反应速率U=-dc(N,)=-1dc(H2)=^_1dc(NH.)

dt3dt2dt

化学反应速率大小首先取决于反应物本性,对一给定的反应,反

应速率U与反应物浓度(压力)、温度、催化剂等因素有关。

2.浓度的影响和反应级数

浓度对反应速率的影响:增加反应物或减少生成物的浓度,反应速率

加大。

(1)质量作用定律:在一定温度下,对于元反应,反应速率与反应物

浓度(以反应方程式中相应物质的化学计量数为指数)的乘积成正比。

元反应:即一步完成的反应,又称基元反应或简单反应.

2)化学反应速率方程式

对于元反应:aA+bB=gG+dD

ab

速率方程式:U=K{c(A)}{c(B)}

式中

K:速率常数,在一定温度和催化剂下,为一常数,与浓度和压力无

关。

n=a+b

n:称反应级数;

例:C2H5cl=C2H4+HC1;V=KC(C2H5C1);n=l一级反应

N02+C0=N0+C02;u=K{C(NO2)}{c(CO));n=2二级反应

2

2N0+02=2N02;U=K{C(NO)}.{c(02));n=3三级反应

非元反应:即两个或两个以上元反应构成.

反应,aA+bB=gG+dD

速率方程式:V

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论