2024届甘肃省临洮县联考数学九年级第一学期期末达标检测试题含解析_第1页
2024届甘肃省临洮县联考数学九年级第一学期期末达标检测试题含解析_第2页
2024届甘肃省临洮县联考数学九年级第一学期期末达标检测试题含解析_第3页
2024届甘肃省临洮县联考数学九年级第一学期期末达标检测试题含解析_第4页
2024届甘肃省临洮县联考数学九年级第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省临洮县联考数学九年级第一学期期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图在中,弦于点于点,若则的半径的长为()A. B. C. D.2.如图,在中,,将绕点逆时针旋转得到,其中点与点是对应点,且点在同一条直线上;则的长为()A. B. C. D.3.如图,DE∥BC,BD,CE相交于O,,,则().A.6 B.9 C.12 D.154.下面四个几何体中,左视图是四边形的几何体共有()A.1个 B.2个 C.3个 D.4个5.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8 B.4 C.10 D.56.下列数学符号中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.7.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()A. B. C. D.8.如图,E为矩形ABCD的CD边延长线上一点,BE交AD于G,AF⊥BE于F,图中相似三角形的对数是()A.5 B.7 C.8 D.109.已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0 B.-3a+c<0C.b2-4ac≥0 D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c10.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是()A. B.1:3 C. D.1:2二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,已知▱OABC的顶点坐标分别是O(0,0),A(3,0),B(4,2),C(1,2),以坐标原点O为位似中心,将▱OABC放大3倍,得到▱ODEF,则点E的坐标是_____.12.一组数据:2,5,3,1,6,则这组数据的中位数是________.13.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为_____.14.如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.15.如图,已知等边△ABC的边长为4,P是AB边上的一个动点,连接CP,过点P作∠EPC=60°,交AC于点E,以PE为边作等边△EPD,顶点D在线段PC上,O是△EPD的外心,当点P从点A运动到点B的过程中,点O也随之运动,则点O经过的路径长为_____.16.如图,中,已知,,点在边上,.把线段绕着点逆时针旋转()度后,如果点恰好落在的边上,那么__________.17.如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD=AC时,tanα1=;如图2,当CD=AC时,tanα2=;如图3,当CD=AC时,tanα3=;……依此类推,当CD=AC(n为正整数)时,tanαn=_____.18.有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是.三、解答题(共66分)19.(10分)解方程:(1)+2x-5=0;(2)=.20.(6分)用适当的方法解下方程:21.(6分)已知关于的方程.(1)求证:方程一定有两个实数根;(2)若方程的两个实数根都是整数,求正整数k的值.22.(8分)(1)问题发现:如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是,位置关系是;(2)探究证明:如图2,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC的延长线上时,连接EC,写出此时线段AD,BD,CD之间的等量关系,并证明;(3)拓展延仲:如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC=45°.若BF=13,CF=5,请直接写出AF的长.23.(8分)如图,A,B,C为⊙O上的定点.连接AB,AC,M为AB上的一个动点,连接CM,将射线MC绕点M顺时针旋转90°,交⊙O于点D,连接BD.若AB=6cm,AC=2cm,记A,M两点间距离为xcm,B,D两点间的距离为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东探究的过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表,补全表格:x/cm00.250.47123456y/cm1.430.6601.312.592.761.660(2)在平面直角坐标系xOy中,描出补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BD=AC时,AM的长度约为cm.24.(8分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为米的点处.这时,一辆出租车由西向东匀速行驶,测得此车从处行驶到处所用的时间为秒,且,.求、之间的路程;请判断此出租车是否超过了城南大道每小时千米的限制速度?25.(10分)如图,在△ABC中,∠C=60°,AB=4.以AB为直径画⊙O,交边AC于点D.AD的长为,求证:BC是⊙O的切线.26.(10分)已知如图所示,点到、、三点的距离均等于(为常数),到点的距离等于的所有点组成图形.射线与射线关于对称,过点C作于.(1)依题意补全图形(保留作图痕迹);(2)判断直线与图形的公共点个数并加以证明.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据垂径定理求得OD,AD的长,并且在直角△AOD中运用勾股定理即可求解.【详解】解:弦,于点,于点,四边形是矩形,,,,;故选:.【点睛】本题考查了垂径定理、勾股定理、矩形的判定与性质;利用垂径定理求出AD,AE的长是解决问题的关键.2、A【分析】根据旋转的性质说明△ACC′是等腰直角三角形,且∠CAC′=90°,理由勾股定理求出CC′值,最后利用B′C=CC′-C′B′即可.【详解】解:根据旋转的性质可知AC=AC′,∠ACB=∠AC′B′=45°,BC=B′C′=1,∴△ACC′是等腰直角三角形,且∠CAC′=90°,∴CC′==4,∴B′C=4-1=1.故选:A.【点睛】本题主要考查了旋转的性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量.3、A【解析】试题分析:因为DE∥BC,所以,,因为AE=3,所以AB=9,所以EB=9-3=1.故选A.考点:平行线分线段成比例定理.4、B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.5、D【详解】解:∵OM⊥AB,∴AM=AB=4,由勾股定理得:OA===5;故选D.6、D【分析】根据轴对称图形与中心对称图形的定义即可判断.【详解】A既不是轴对称图形也不是中心对称图形;B是中心对称图形,但不是轴对称图形;C是轴对称图形,但不是中心对称图形;D既是轴对称图形,又是中心对称图形,故选D.【点睛】此题主要考察轴对称图形与中心对称图形的定义,熟知其定义是解题的关键.7、A【分析】根据概率公式计算即可得出答案.【详解】∵“绿水青山就是金山银山”这句话中只有10个字,其中“山”字有三个,∴P(山)=故选:A.【点睛】本题考查了简单事件概率的计算.熟记概率公式是解题的关键.8、D【解析】试题解析:∵矩形ABCD∴AD∥BC,AB∥CD,∠DAB=∠ADE=∴△EDG∽△ECB∽△BAG∵AF⊥BE∴∠AFG=∠BFA=∠DAB=∠ADE=∵∠AGF=∠BGA,∠ABF=∠GBA∴△GAF∽△GBA∽△ABF∴△EDG∽△ECB∽△BAG∽△AFG∽△BFA∴共有10对故选D.9、B【解析】解:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a﹣4a+c=﹣3a+c<0,故本选项正确;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;D.y=ax2+bx+c=,∵=2,∴原式=,∴向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选B.10、A【分析】根据题意,利用勾股定理可先求出某人走的水平距离,再求出这个斜坡的坡度即可.【详解】解:根据题意,某人走的水平距离为:,∴坡度;故选:A.【点睛】此题主要考查学生对坡度的理解,在熟悉了坡度的定义后利用勾股定理求得水平距离是解决此题的关键.二、填空题(每小题3分,共24分)11、(12,6)或(-12,-6)【分析】根据平行四边形的性质、位似变换的性质计算,得到答案.【详解】以坐标原点O为位似中心,将▱OABC放大3倍,得到▱ODEF∵点B的坐标为(4,2),且点B的对应点为点E∴点E的坐标为(4×3,2×3)或(-4×3,-2×3)即:(12,6)或(-12,-6)故答案为:(12,6)或(-12,-6).【点睛】本题考查了位似和平行四边形的知识;求解的关键是熟练掌握位似的性质,从而完成求解.12、3【解析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.13、2或或.【分析】由勾股定理求出AB,设AE=x,则EF=x,BF=1﹣2x;分三种情况讨论:①当BF=BC时,列出方程,解方程即可;②当BF=CF时,F在BC的垂直平分线上,得出AF=BF,列出方程,解方程即可;③当CF=BC时,作CG⊥AB于G,则BG=FGBF,由射影定理求出BG,再解方程即可.【详解】由翻折变换的性质得:AE=EF.∵∠ACB=90°,AC=8,BC=6,∴AB1.设AE=x,则EF=x,BF=1﹣2x.分三种情况讨论:①当BF=BC时,1﹣2x=6,解得:x=2,∴AE=2;②当BF=CF时.∵BF=CF,∴∠B=∠FCB.∵∠A+∠B=90°,∠FCA+∠FCB=90°,∴∠A=∠FCA,∴AF=FC.∵BF=FC,∴AF=BF,∴x+x=1﹣2x,解得:x,∴AE;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FGBF.根据射影定理得:BC2=BG•AB,∴BG,即(1﹣2x),解得:x,∴AE;综上所述:当△BCF为等腰三角形时,AE的长为:2或或.故答案为:2或或.【点睛】本题考查了翻折变换的性质、勾股定理、射影定理、等腰三角形的性质;本题有一定难度,需要进行分类讨论.14、【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】设A坐标为(x,y),∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A(-2,-3),设过点A的反比例解析式为y=,把A(-2,-3)代入得:k=6,则过点A的反比例解析式为y=,故答案为y=.【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.15、【分析】根据等边三角形的外心性质,根据特殊角的三角函数即可求解.【详解】解:如图,作BG⊥AC、CF⊥AB于点G、F,交于点I,则点I是等边三角形ABC的外心,∵等边三角形ABC的边长为4,∴AF=BF=2∠IAF=30°∴AI=∵点P是AB边上的一个动点,O是等边三角形△EPD的外心,∴当点P从点A运动到点B的过程中,点O也随之运动,点O的经过的路径长是AI的长,∴点O的经过的路径长是.故答案为:.【点睛】本题考查等边三角形的外心性质,关键在于熟悉性质,结合图形计算.16、或【分析】分两种情况:①当点落在AB边上时,②当点落在AB边上时,分别求出的值,即可.【详解】①当点落在AB边上时,如图1,∴DB=DB′,∴∠B=∠DB′B=55°,∴∠BDB′=180°-55°-55°=70°;②当点落在AB边上时,如图2,∴DB=DB′=2CD,∵,∴∠CB′D=30°,∴∠BDB′=30°+90°=120°.故答案是:或.【点睛】本题主要考查等腰三角形的性质和直角三角形的性质定理,画出图形分类讨论,是解题的关键.17、【分析】探究规律,利用规律解决问题即可.【详解】观察可知,正切值的分子是3,5,7,9,…,2n+1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中间一个.当,将故答案为:【点睛】本题考查规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.18、【详解】解:∵每个扇形大小相同,因此阴影面积与空白的面积相等,∴落在白色扇形部分的概率为:=.故答案为.考点:几何概率三、解答题(共66分)19、(1);(2);过程见详解.【分析】(1)利用因式分解法解一元二次方程即可;(2)利用直接开平方法求解即可.【详解】解:(1)+2x-5=0解得:;(2)=解得.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.20、x=3或1【分析】移项,因式分解得到,再求解.【详解】解:,∴,∴,∴,∴x-3=0或x-1=0,∴x=3或1.【点睛】本题考查了一元二次方程,解题的关键是根据方程的形式选择因式分解法.21、(1)证明见解析;(2)正整数.【分析】(1)证明根的判别式不小于0即可;

(2)根据公式法求出方程的两根,用k表示出方程的根,再根据方程的两个实数根都是整数,进而求出k的值.【详解】解:(1)证明:,∴方程一定有两个实数根.(2)解:,,,,∵方程的两个实数根都是整数,∴正整数1或1.22、(1)BD=CE,BD⊥CE;(2)2AD2=BD2+CD2,理由详见解析;(3).【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)证明△BAD≌△CAE,得到BD=CE,根据勾股定理计算即可;(3)如图3,作辅助线,构建全等三角形,证明△BAF≌△CAG,得到CG=BF=13,证明是直角三角形,根据勾股定理计算即可.【详解】解:(1)在Rt△ABC中,AB=AC,∴∠B=∠ACB=90°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∵∠ACB=45°,∴,故答案为BD=CE,BD⊥CE;(2)2AD2=BD2+CD2,理由是:如图2,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∵AD=AE,∠DAE=90°,∴,∴2AD2=BD2+CD2;(3)如图3,将AF绕点A逆时针旋转90°至AG,连接CG、FG,则△FAG是等腰直角三角形,∴∠AFG=45°,∵∠AFC=45°,∴∠GFC=90°,同理得:△BAF≌△CAG,∴CG=BF=13,Rt△CGF中,∵CF=5,∴FG=12,∵△FAG是等腰直角三角形,∴.【点睛】本题主要考查了全等三角形的判定与性质,勾股定理,以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题关键.23、(1)2.41;(2)详见解析;(3)1.38或4.1(本题答案不唯一).【分析】(1)描出图象后,测量x=4时,y的值,即可求解;(2)描点作图即可;(3)当BD=AC时,即:y=2,即图中点A、B的位置,即可求解.【详解】(1)描出后图象后,x=4时,测得y=2.41(答案不唯一),故答案是2.41;(2)图象如下图所示:当x=4时,测量得:y=2.41;(3)当BD=AC时,y=2,即图中点A、B的位置,从图中测量可得:xA=1.38,xB=4.1,故:答案为:1.38或4.1.【点睛】此题考查圆的综合题,函数的作图,解题关键在于通过描点的方法作图,再根据题意测量出相应的长度.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论