




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省广州市名校联盟数学九年级第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,一块含角的直角三角板绕点按顺时针方向,从处旋转到的位置,当点、点、点在一条直线上时,这块三角板的旋转角度为()A. B. C. D.2.⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d()A. B. C. D.3.某商品原价为180元,连续两次提价后售价为300元,设这两次提价的年平均增长率为x,那么下面列出的方程正确的是()A.180(1+x)=300 B.180(1+x)2=300C.180(1﹣x)=300 D.180(1﹣x)2=3004.将y=﹣(x+4)2+1的图象向右平移2个单位,再向下平移3个单位,所得函数最大值为()A.y=﹣2 B.y=2 C.y=﹣3 D.y=35.把抛物线y=-x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为()A.y=-(x+1)2+1 B.y=-(x+1)2-1 C.y=-(x-1)2+1 D.y=-(x-1)2-16.已知关于x的方程x2+bx+a=0有一个根是﹣a(a≠0),则a﹣b的值为()A.a﹣b=1 B.a﹣b=﹣1 C.a﹣b=0 D.a﹣b=±17.如图,这是二次函数的图象,则的值等于()A. B. C. D.8.如图,平面直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,把△EFO缩小为△E′F′O,且△E′F′O与△EFO的相似比为1:2,则点E的对应点E′的坐标为()A.(2,﹣1) B.(8,﹣4)C.(2,﹣1)或(﹣2,1) D.(8,﹣4)或(﹣8,4)9.如图,已知和是以点为位似中心的位似图形,且和的周长之比为,点的坐标为,则点的坐标为().A. B. C. D.10.已知甲、乙两地相距100(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间(t)与行驶速度v(km/h)的函数关系图象大致是().A. B. C. D.二、填空题(每小题3分,共24分)11.若3是关于x的方程x2-x+c=0的一个根,则方程的另一个根等于____.12.已知:是反比例函数,则m=__________.13.如图,在平面直角坐标系中,点,点,作第一个正方形且点在上,点在上,点在上;作第二个正方形且点在上,点在上,点在上…,如此下去,其中纵坐标为______,点的纵坐标为______.14.如图,某园林公司承担了绿化某社区块空地的绿化任务,工人工作一段时间后,提高了工作效率.该公司完成的绿化面积(单位:与工作时间(单位:)之间的函数关系如图所示,则该公司提高工作效率前每小时完成的绿化面积是____________.15.中,若,,,则的面积为________.16.分解因式:__________.17.如图,AB是⊙O的直径,D是⊙O上的任意一点(不与点A、B重合),延长BD到点C,使DC=BD,则△ABC的形状:_____18.如图是小明在抛掷图钉的试验中得到的图钉针尖朝上的折线统计图,请你估计抛掷图钉针尖朝上的概率是_____.三、解答题(共66分)19.(10分)为进一步发展基础教育,自年以来,某县加大了教育经费的投入,年该县投入教育经费万元.年投入教育经费万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.20.(6分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.21.(6分)已知二次函数的顶点坐标为,且经过点,设二次函数图象与轴交于点,求点的坐标.22.(8分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P为边BC上一个动点(可以包括点C但不包括点B),以P为圆心PB为半径作⊙P交AB于点D过点D作⊙P的切线交边AC于点E,(1)求证:AE=DE;(2)若PB=2,求AE的长;(3)在P点的运动过程中,请直接写出线段AE长度的取值范围.23.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.24.(8分)已知:关于x的方程,根据下列条件求m的值.(1)方程有一个根为1;(2)方程两个实数根的和与积相等.25.(10分)一个可以自由转动的转盘,其盘面分为等份,分别标上数字.小颖准备转动转盘次,现已转动次,每一次停止后,小颖将指针所指数字记录如下:次数数字小颖继续自由转动转盘次,判断是否可能发生“这次指针所指数字的平均数不小于且不大于”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,请说明理由.(指针指向盘面等分线时为无效转次.)26.(10分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一.深圳著名旅游“网红打卡地”东部华侨城景区在2018年春节长假期间,共接待游客达20万人次,预计在2020年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2018至2020年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2020年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?
参考答案一、选择题(每小题3分,共30分)1、C【分析】直接利用旋转的性质得出对应边,再根据三角板的内角的度数得出答案.【详解】解:∵将一块含30°角的直角三角板ABC绕点C顺时针旋转到△A'B'C,
∴BC与B'C是对应边,
∴旋转角∠BCB'=180°-30°=150°.
故选:C.【点睛】此题主要考查了旋转的性质,对应点与旋转中心所连线段的夹角等于旋转角,正确得出对应边是解题关键.2、D【解析】根据点与圆的位置关系判断得出即可.【详解】∵点P在圆内,且⊙O的半径为4,
∴0≤d<4,
故选D.【点睛】本题考查了点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r.3、B【分析】本题可先用x表示出第一次提价后商品的售价,再根据题意表示出第二次提价后的售价,然后根据已知条件得到关于x的方程.【详解】当商品第一次提价后,其售价为:180(1+x);当商品第二次提价后,其售价为:180(1+x)1.∴180(1+x)1=2.故选:B.【点睛】本题主要考查一元二次方程的应用,要根据题意表示出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于2即可.4、A【分析】根据二次函数图象“左移x加,右移x减,上移c加,下移c减”的规律即可知平移后的解析式,进而可判断最值.【详解】将y=﹣(x+4)1+1的图象向右平移1个单位,再向下平移3个单位,所得图象的函数表达式是y=﹣(x+4﹣1)1+1﹣3,即y=﹣(x+1)1﹣1,所以其顶点坐标是(﹣1,﹣1),由于该函数图象开口方向向下,所以,所得函数的最大值是﹣1.故选:A.【点睛】本题主要考查二次函数图象的平移问题和最值问题,熟练掌握平移规律是解题关键.5、B【解析】试题分析:根据抛物线的平移规律“左加右减,上加下减”,可直接求得平移后的抛物线的解析式为:.6、B【分析】把x=﹣a代入方程得到一个二元二次方程,方程的两边都除以a,即可得出答案.【详解】把x=﹣a代入方程得:(﹣a)2﹣ab+a=0,a2﹣ab+a=0,∵a≠0,∴两边都除以a得:a﹣b+1=0,即a﹣b=﹣1,故选:B.【点睛】此题考查一元二次方程的解,是方程的解即可代入方程求其他未知数的值或是代数式的值.7、D【分析】由题意根据二次函数图象上点的坐标特征,把原点坐标代入解析式得到=0,然后解关于a的方程即可.【详解】解:因为二次函数图象过原点,所以把(0,0)代入二次函数得出=0,解得或,又因为二次函数图象开口向下,所以.故选:D.【点睛】本题考查二次函数图象上点的坐标特征,根据二次函数图象上点的坐标满足其解析式进行分析作答即可.8、C【分析】利用位似图形的性质,即可求得点E的对应点E'的坐标.【详解】∵点E(﹣4,2),以O为位似中心,按2:1的相似比把△EFO缩小为△E'F'O,∴点E的对应点E'的坐标为:(2,﹣1)或(﹣2,1).故选C.【点睛】本题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解答此题的关键.9、A【分析】设位似比例为k,先根据周长之比求出k的值,再根据点B的坐标即可得出答案.【详解】设位似图形的位似比例为k则和的周长之比为,即解得又点B的坐标为点的横坐标的绝对值为,纵坐标的绝对值为点位于第四象限点的坐标为故选:A.【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.10、C【分析】根据题意写出t与v的关系式判断即可.【详解】根据题意写出t与v的关系式为,故选C.【点睛】本题是对反比例函数解析式和图像的考查,准确写出解析式并判断其图像是解决本题的关键.二、填空题(每小题3分,共24分)11、-1【解析】已知3是关于x的方程x1-5x+c=0的一个根,代入可得9-3+c=0,解得,c=-6;所以由原方程为x1-5x-6=0,即(x+1)(x-3)=0,解得,x=-1或x=3,即可得方程的另一个根是x=-1.12、-2【解析】根据反比例函数的定义.即y=(k≠0),只需令m2-5=-1、m-2≠0即可.【详解】因为y=(m−2)是反比例函数,所以x的指数m2−5=−1,即m2=4,解得:m=2或−2;又m−2≠0,所以m≠2,即m=−2.故答案为:−2.【点睛】本题考查的知识点是反比例函数的定义,解题的关键是熟练的掌握反比例函数的定义.13、【分析】先确定直线AB的解析式,然后再利用正方形的性质得出点C1和C2的纵坐标,归纳规律,然后按规律求解即可.【详解】解:设直线AB的解析式y=kx+b则有:,解得:所以直线仍的解析式是:设C1的横坐标为x,则纵坐标为∵正方形OA1C1B1∴x=y,即,解得∴点C1的纵坐标为同理可得:点C2的纵坐标为=∴点Cn的纵坐标为.故答案为:,.【点睛】本题属于一次函数综合题,主要考查了运用待定系数法求一次函数的解析式、正方形的性质、一次函数图象上点的坐标特点等知识,掌握数形结合思想是解答本题的关键.14、【分析】利用待定系数法求出提高效率后与的函数解析式,由此可得时,的值,然后即可得出答案.【详解】由题意,可设提高效率后得与的函数解析式为将和代入得解得因此,与的函数解析式为当时,则该公司提高工作效率前每小时完成的绿化面积故答案为:100.【点睛】本题考查了一次函数的实际应用,依据图象,利用待定系数法求出函数解析式是解题关键.15、【分析】过点A作BC边上的高交BC的延长线于点D,在中,利用三角函数求出AD长,再根据三角形面积公式求解即可.【详解】解:如图,作于点D,则,在中,所以的面积为故答案为:.【点睛】本题主要考查了三角函数,灵活添加辅助线利用三角函数求出三角形的高是解题的关键.16、【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点,再利用平方差公式分解因式.a2-9=a2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.17、等腰三角形【分析】△ABC为等腰三角形,理由为:连接AD,由AB为圆O的直径,利用直径所对的圆周角为直角得到AD垂直于BC,再由BD=CD,得到AD垂直平分BC,利用线段垂直平分线定理得到AB=AC,可得证.【详解】解:△ABC为等腰三角形,理由为:
连接AD,
∵AB为圆O的直径,
∴∠ADB=90°,
∴AD⊥BC,又BD=CD,
∴AD垂直平分BC,
∴AB=AC,
则△ABC为等腰三角形.
故答案为:等腰三角形.【点睛】此题考查了圆周角定理,等腰三角形的性质,熟练掌握圆周角定理是解本题的关键.18、0.1【分析】利用频数统计图可得,在试验中图钉针尖朝上的频率在0.1波动,然后利用频率估计概率可得图钉针尖朝上的概率.【详解】解:由统计图得,在试验中得到图钉针尖朝上的频率在0.1波动,所以可根据计图钉针尖朝上的概率为0.1.【点睛】本题考查了频数统计图用频率估计概率,解决本题的关键是正确理解题意,明确频率和概率之间的联系和区别.三、解答题(共66分)19、该县投入教育经费的年平均增长率为20%【分析】设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;【详解】解:设该县投入教育经费的年平均增长率为x,根据题意得:
6000(1+x)2=8640
解得:x1=0.2=20%,x2=-2.2(不合题意,舍去),经检验,x=20%符合题意,答:该县投入教育经费的年平均增长率为20%;【点睛】此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.20、(1)D(﹣2,3);(2)二次函数的解析式为y=﹣x2﹣2x+3;(3)一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.【详解】试题分析:(1)由抛物线的对称性来求点D的坐标;(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),把点A、B、C的坐标分别代入函数解析式,列出关于系数a、b、c的方程组,通过解方程组求得它们的值即可;(3)由图象直接写出答案.试题解析:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.考点:1、抛物线与x轴的交点;2、待定系数法;3、二次函数与不等式(组).21、点的坐标为:【分析】以顶点式设函数解析式,将点代入,求出二次函数解析式,再令,求得对应的值,则可得点的坐标.【详解】解:∵二次函数的顶点坐标为∴设其解析式为:.∵函数经过点,∴,∴,∴.令得:∴点的坐标为:.【点睛】此题考查的是求二次函数的解析式和根据解析式求点的坐标,掌握二次函数的顶点式是解决此题的关键.22、(1)详见解析;(3)AE=;(3)≤AE<.【解析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B+∠A=90°,利用PD=PB得∠EDA=∠A进而得出答案;(3)利用勾股定理得出ED3+PD3=EC3+CP3=PE3,求出AE即可;(3)分别根据当D(P)点在B点时以及当P与C重合时,求出AE的长,进而得出AE的取值范围.【详解】(1)证明:如图1,连接PD.∵DE切⊙O于D.∴PD⊥DE.∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PB.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(3)解:如图1,连接PE,设DE=AE=x,则EC=8-x,∵PB=PD=3,BC=1.∴PC=3.∵∠PDE=∠C=90°,∴ED3+PD3=EC3+CP3=PE3.∴x3+33=(8-x)3+33.解得x=.∴AE=;(3)解:如图3,当P点在B点时,此时点D也在B点,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC3+BC3=BE3,∴(8-x)3+13=x3,解得:x=,如图3,当P与C重合时,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC3=DC3+DE3,∴(8-x)3=13+x3,解得:x=,∵P为边BC上一个动点(可以包括点C但不包括点B),∴线段AE长度的取值范围为:≤AE<.【点睛】本题主要考查圆的综合应用、切线的性质与判定以及勾股定理等知识,利用数形结合以及分类讨论的思想得出是解题关键.23、(1)证明见解析;(2).【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可求解.【详解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=考点:相似三角形的判定24、(1);(2)【分析】(1)将1代入原方程,可得关于m的方程,解此方程即可求得答案;(2)利用根与系数的关系列出方程即可求得答案.【详解】(1)方程的根1代入方程得:=0,整理得:=0,∵∴故答案为:(2)方程两个实数根的和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (三模)2025年5月潍坊市高三高考模拟考试历史试卷
- 肺功能康复护理
- 国际学生医疗保险及全面体检服务补充协议
- 跨境电商平台客服质量监控与绩效考核合同
- 电商押金结算服务协议及消费者权益保护规范
- 社区公益项目社区工作者岗位服务协议
- 影视动画主题衍生品生产销售及收益分成合同
- 家庭环保装修工程验收合格责任保证协议
- 房产抵押解除与房屋租赁合同终止协议
- 突发事件公关危机应对与危机干预合同
- 园林喷洒器企业数字化转型与智慧升级战略研究报告
- GB/T 9065.2-2025液压传动连接软管接头第2部分:24°锥形
- 2023年贵州省粮食储备集团有限公司面向社会公开招聘工作人员15人笔试参考题库附带答案详解
- 道路运输汛期教育培训
- 患者投诉处理与护理试题及答案
- 期中考试考后分析总结主题班会《全员出动寻找消失的分数》
- 公司注册合同协议
- 房地产市场报告 -2025年第一季度青岛写字楼和零售物业市场概况报告
- 2025轨道车司机(技师)重点考试题库及答案(浓缩300题)
- 心功能分级课件
- 行为资产定价理论综述
评论
0/150
提交评论