 
         
         
         
         
        版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省石家庄市裕华实验中学九年级数学第一学期期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在菱形中,,,则对角线等于()A.2 B.4 C.6 D.82.图中的两个梯形成中心对称,点P的对称点是()A.点A B.点B C.点C D.点D3.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40° B.50° C.80° D.100°4.用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是()A.(x+2)2=2 B.(x﹣2)2=﹣2 C.(x﹣2)2=2 D.(x﹣2)2=65.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.抛掷一枚质地均匀的硬币,连续掷三次,出现“一次正面,两次反面”的概率为()A. B. C. D.7.如图,在菱形中,已知,,以为直径的与菱形相交,则图中阴影部分的面积为()A. B. C. D.8.一组数据0、-1、3、2、1的极差是()A.4 B.3 C.2 D.19.一元二次方程x2﹣3x﹣4=0的一次项系数是()A.1 B.﹣3 C.3 D.﹣410.如图,⊙O的弦AB=16,OM⊥AB于M,且OM=6,则⊙O的半径等于A.8 B.6 C.10 D.2011.如图,边长为的正六边形内接于,则扇形(图中阴影部分)的面积为()A. B. C. D.12.解方程最适当的方法是()A.直接开平方法 B.配方法 C.因式分解法 D.公式法二、填空题(每题4分,共24分)13.方程的根是__________.14.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是________.15.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.16.设分别为一元二次方程的两个实数根,则____.17.如图,正方形内接于,正方形的边长为,若在这个圆面上随意抛一粒豆子,则豆子落在正方形内的概率是_____________.18.如图:点是圆外任意一点,连接、,则______(填“>”、“<”或“=”)三、解答题(共78分)19.(8分)某游乐场试营业期间,每天运营成本为1000元.经统计发现,每天售出的门票张数(张)与门票售价(元/张)之间满足一次函数,设游乐场每天的利润为(元).(利润=票房收入-运营成本)(1)试求与之间的函数表达式.(2)游乐场将门票售价定为多少元/张时,每天获利最大?最大利润是多少元?20.(8分)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.21.(8分)已知,如图,在平面直角坐标系中,直线与轴交于点A,与轴交于点B,抛物线经过A、B两点,与轴的另一个交点为C.(1)直接写出点A和点B的坐标;(2)求抛物线的函数解析式;(3)D为直线AB下方抛物线上一动点;①连接DO交AB于点E,若DE:OE=3:4,求点D的坐标;②是否存在点D,使得∠DBA的度数恰好是∠BAC度数2倍,如果存在,求点D的坐标,如果不存在,说明理由.22.(10分)如图,在中,是内心,是边上一点,以点为圆心,为半径的经过点.求证:是的切线;已知的半径是.①若是的中点,,则;②若,求的长.23.(10分)如图,,点是线段的一个三等分点,以点为圆心,为半径的圆交于点,交于点,连接(1)求证:是的切线;(2)点为上的一动点,连接.①当时,四边形是菱形;②当时,四边形是矩形.24.(10分)为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,将学生的成绩分为四个等级,并将结果绘制成不完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)参加征文比赛的学生共有人;(2)补全条形统计图;(3)在扇形统计图中,表示等级的扇形的圆心角为__图中;(4)学校决定从本次比赛获得等级的学生中选出两名去参加市征文比赛,已知等级中有男生一名,女生两名,请用列表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率.25.(12分)如图,已知抛物线y1=﹣x2+x+2与x轴交于A、B两点,与y轴交于点C,直线l是抛物线的对称轴,一次函数y2=kx+b经过B、C两点,连接AC.(1)△ABC是三角形;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)结合图象,写出满足y1>y2时,x的取值范围.26.如图,在Rt△ABC中,∠ACB90°,∠ABC的平分线BD交AC于点D.(1)求作⊙O,使得点O在边AB上,且⊙O经过B、D两点(要求尺规作图,保留作图痕迹,不写作法);(2)证明AC与⊙O相切.
参考答案一、选择题(每题4分,共48分)1、A【分析】由菱形的性质可证得为等边三角形,则可求得答案.【详解】四边形为菱形,,,,,为等边三角形,,故选:.【点睛】主要考查菱形的性质,利用菱形的性质证得为等边三角形是解题的关键.2、C【分析】根据两个中心对称图形的性质即可解答.关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分;关于中心对称的两个图形能够完全重合.【详解】解:根据中心对称的性质:
图中的两个梯形成中心对称,点P的对称点是点C.故选:C【点睛】本题考查中心对称的性质,属于基础题,掌握其基本的性质是解答此题的关键.3、B【解析】试题分析:∵OB=OC,∠OCB=40°,∴∠BOC=180°-2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°.故选B.4、C【分析】按照配方法的步骤:移项,配方(方程两边都加上4),即可得出选项.【详解】解:x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,(x﹣2)2=2,故选:C.【点睛】本题主要考查配方法,掌握完全平方公式是解题的关键.5、C【解析】根据相似三角形三边对应成比例进行求解即可得.【详解】设另一个三角形的最长边为xcm,由题意得5:2.5=9:x,解得:x=4.5,故选C.【点睛】本题考查了相似三角形的性质,熟知相似三角形对应边成比例是解题的关键.6、B【分析】利用树状图分析,即可得出答案.【详解】共8种情况,出现“一次正面,两次反面”的情况有3种,所以概率=,故答案选择B.【点睛】本题考查的是求概率:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7、D【分析】根据菱形与的圆的对称性到△AOE为等边三角形,故可利用扇形AOE的面积减去△AOE的面积得到需要割补的面积,再利用圆的面积减去4倍的需要割去的面积即可求解.【详解】∵菱形中,已知,,连接AO,BO,∴∠ABO=30°,∠AOB=90°,∴∠BAO=60°,又AO=EO,∴△AOE为等边三角形,故AE=EO=AB=2∴r=2∴S扇形AOE==S△AOE===∴图中阴影部分的面积=×22-4(-)=故选D.【点睛】本题考查的是扇形面积计算、菱形的性质,掌握扇形面积公式是解题的关键.8、A【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=1.
故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.9、B【解析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中bx叫一次项,系数是b,可直接得到答案.【详解】解:一次项是:未知数次数是1的项,故一次项是﹣3x,系数是:﹣3,故选:B.【点睛】此题考查的是求一元一次方程一般式中一次项系数,掌握一元一次方程的一般形式和一次项系数的定义是解决此题的关键.10、C【分析】连接OA,即可证得△OMA是直角三角形,根据垂径定理即可求得AM,根据勾股定理即可求得OA的长,即⊙O的半径.【详解】连接OA,∵M是AB的中点,∴OM⊥AB,且AM=8,在Rt△OAM中,OA===1.故选C.【点睛】本题主要考查了垂径定理,以及勾股定理,根据垂径定理求得AM的长,证明△OAM是直角三角形是解题的关键.11、B【分析】根据已知条件可得出,圆的半径为3,再根据扇形的面积公式()求解即可.【详解】解:正六边形内接于,,,是等边三角形,,扇形的面积,故选:.【点睛】本题考查的知识点求扇形的面积,熟记面积公式并通过题目找出圆心角的度数与圆的半径是解题的关键12、C【分析】根据解一元二次方程的方法进行判断.【详解】解:先移项得到,然后利用因式分解法解方程.故选:C.【点睛】本题考查了解一元二次方程——因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.二、填空题(每题4分,共24分)13、【分析】由题意根据直接开平方法的步骤求出x的解即可.【详解】解:∵,∴x=±2,∴.故答案为:.【点睛】本题考查解一元二次方程-直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.14、②④【解析】由抛物线开口方向得到a<0,有对称轴方程得到b=-2a>0,由∵抛物线与y轴的交点位置得到c>0,则可对①进行判断;由b=-2a可对②进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=2时,y>0,于是可对③进行判断;通过比较点(-,y1)与点(,y2)到对称轴的距离可对④进行判断.【详解】:∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=-=1,
∴b=-2a>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①错误;
∵b=-2a,
∴2a+b=0,所以②正确;
∵抛物线与x轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(3,0),
∴当x=2时,y>0,
∴4a+2b+c>0,所以③错误;
∵点(-,y1)到对称轴的距离比点(,y2)对称轴的距离远,
∴y1<y2,所以④正确.
故答案为:②④.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.15、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=ab=×6×8=14cm1,故答案为14.16、-2025【分析】根据一元二次方程根与系数的关系即可得出,,将其代入中即可求出结论.【详解】解:,分别为一元二次方程的两个实数根,,,则.故答案为:.【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出,是解题的关键.17、【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.【详解】解:因为正方形的边长为2cm,则对角线的长为cm,所以⊙O的半径为cm,直径为2cm,⊙O的面积为2πcm2;正方形的面积为4cm2因为豆子落在圆内每一个地方是均等的,所以P(豆子落在正方形ABCD内)=.故答案为:.【点睛】此题主要考查几何概率的意义:一般地,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有
P(A)=.18、<【分析】设BP与圆交于点D,连接AD,根据同弧所对的圆周角相等,可得∠ACB=∠ADB,然后根据三角形外角的性质即可判断.【详解】解:设BP与圆交于点D,连接AD∴∠ACB=∠ADB∵∠ADB是△APD的外角∴∠ADB>∴<∠ACB故答案为:<.【点睛】此题考查的是圆周角定理的推论和三角形外角的性质,掌握同弧所对的圆周角相等和三角形的外角大于任何一个与它不相邻的内角是解决此题的关键.三、解答题(共78分)19、(1)w=;(2)游乐场将门票售价定为25元/张时,每天获利最大,最大利润是1500元【分析】(1)根据及利润=票房收入-运营成本即可得出化简即可.(2)根据二次函数的性质及对称轴公式即可得最大值,及x的值.【详解】(1)根据题意,得.(2)∵中,,∴有最大值.当时,最大,最大值为1500.答:游乐场将门票售价定为25元/张时,每天获利最大,最大利润是1500元.【点睛】本题考查了二次函数的实际应用,结合二次函数的性质即可得到最大值.20、(1)剩余木料的面积为6dm1;(1)1.【分析】(1)先确定两个正方形的边长,然后结合图形解答即可;(1)估算和的大小,结合题意解答即可.【详解】解:(1)∵两个正方形的面积分别为18dm1和31dm1,∴这两个正方形的边长分别为3dm和4dm,∴剩余木料的面积为(4﹣3)×3=6(dm1);(1)4<3<4.5,1<<1,∴从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出1块这样的木条,故答案为:1.【点睛】本题考查的是二次根式的应用,掌握无理数的估算方法是解答本题的关键.21、(1)A(-4,0)、B(0,-2);(2);(3)①(-1,3)或(-3,-2);②(-2,-3).【分析】(1)在中由求出对应的x的值,由x=0求出对应的y的值即可求得点A、B的坐标;(2)把(1)中所求点A、B的坐标代入中列出方程组,解方程组即可求得b、c的值,从而可得二次函数的解析式;(3)①如图,过点D作x轴的垂线交AB于点F,连接OD交AB于点E,由此易得△DFE∽OBE,这样设点D的坐标为,点F的坐标为,结合相似三角形的性质和DE:OE=3:4,即可列出关于m的方程,解方程求得m的值即可得到点D的坐标;②在y轴的正半轴上截取OH=OB,可得△ABH是等腰三角形,由此可得∠HAB=2∠BAC,若此时∠DAB=2∠BAC=∠HAB,则BD∥AH,再求出AH的解析式可得BD的解析式,由BD的解析式和抛物线的解析式联立构成方程组,解方程组即可求得点D的坐标.【详解】解:(1)在中,由可得:,解得:;由可得:,∴点A的坐标为(-4,0),点B的坐标为(0,-2);(2)把点A的坐标为(-4,0),点B的坐标为(0,-2)代入得:,解得:,∴抛物线的解析式为:;(3)①过点D作x轴的垂线交AB于点F,设点D,F,连接DO交AB于点E,△DFE∽OBE,因为DE:OE=3:4,所以FD:BO=3:4,即:FD=BO=,所以,解之得:m1=-1,m2=-3,∴D的坐标为(-1,3)或(-3,-2);②在y轴的正半轴上截取OH=OB,可得△ABH是等腰三角形,∴∠BAH=2∠BAC,若∠DBA=2∠BAC,则∠DBA=∠BAH,∴AH//DB,由点A的坐标(-4,0)和点H的坐标(0,2)求得直线AH的解析式为:,∴直线DB的解析式是:,将:联立可得方程组:,解得:,∴点D的坐标(-2,-3).【点睛】本题考查二次函数的综合应用,解第2小题的关键是过点D作x轴的垂线交AB于点F,连接OD交AB于点E,从而构造出△DFE∽OBE,这样利用相似三角形的性质和已知条件即可求得D的坐标;解第3小题的关键是在x轴的上方作OH=OB,连接AH,从而构造出∠BAH=2∠BAC,这样由∠DBA=∠BAH可得AH∥BD,求出AH的解析式即可得到BD的解析式,从而将问题转化成求BD和抛物线的交点坐标即可使问题得到解决.22、(1)详见解析;(2)①;②【分析】(1)延长交于,连接.得出,再利用角之间的关系可得出,即,结论即可得证.(2)①利用勾股定理即可求解②由知,,根据对应线段成比例,可得出AB,AD的值,从而可求出AI的长.【详解】解:(1)证明:延长交于,连接.是的内心,平分平分...又,....为的切线.①∵∴.②解:由知,..∴.【点睛】本题考查的知识点有圆的切线的判定定理,相似三角形的判定与性质,综合性较强,利用数形结合的方法可以更好的理解题目,有助于找出解题的方向.23、(1)见解析;(2)①60°,②120°.【分析】(1)连接,由,得到为等边三角形,得到,即可得到,则结论成立;(2)①连接BD,由圆周角定理,得到∠ABD=30°,则∠DBE=60°,又有∠BEP=120°,根据同旁内角互补得到PE//DB,然后证明,即可得到答案;②由圆周角定理,得∠ABD=60°,得到∠EBD=90°,然后由直径所对的圆周角为90°,得到,即可得到答案.【详解】证明:连接,,.,为等边三角形,.点是的三等分点,,,,即,是的切线.(2)①当时,四边形是菱形;如图,连接BD,∵,∴,∴,∵AB为直径,则∠AEB=90°,由(1)知,∴,∴,∴PE//DB,∵,,∴,∴四边形是菱形;故答案为:60°.②当时,四边形是矩形.如图,连接AE、AD、DB,∵,∴,∴,∵AB是直径,∴,∴四边形是矩形.故答案为:.【点睛】本题考查了圆的切线的判定和性质,圆周角定理,菱形的判定和矩形的判定,解题的关键是正确作出辅助线,利用圆的性质进行解题.24、(1)30;(2)图见解析;(3)144°,30;(4).【分析】(1)根据等级为A的人数除以所占的百分比即可求出总人数;(2)根据条形统计图得出A、C、D等级的人数,用总人数减A、C、D等级的人数即可;(3)计算C等级的人数所占总人数的百分比,即可求出表示等级的扇形的圆心角和的值;(4)利用列表法或树状图法得出所有等可能的情况数,找出一名男生和一名女生的情况数,即可求出所求的概率.【详解】解:(1)根据题意得成绩为A等级的学生有3人,所占的百分比为10%,则3÷10%=30,即参加征文比赛的学生共有30人;(2)由条形统计图可知A、C、D等级的人数分别为3人、12人、6人,则30−3−12−6=9(人),即B等级的人数为9人补全条形统计图如下图(3),,∴m=30(4)依题意,列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)由上表可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以;或树状图如下由上图可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以.【点睛】本题考查了条形统计图、扇形统计图以及利用列表法或者树状图法求概率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮安市中医院病房保洁流程与终末消毒考核
- 龙岩市中医院内镜附件使用考核
- 淄博市人民医院影像时间窗判断考核
- 2025-2030磷化工产业链延伸方向与环保技改投入评估研究报告
- 2025-2030硅基光子芯片设计创新研究及封装测试挑战与数据中心应用前景报告
- 丽水市中医院移植患者超声考核
- 2025-2030矿物皮质激素受体拮抗剂专利悬崖期仿制药企战略机遇评估报告
- 亳州市中医院脑电图新技术考核
- 物理实验室安全培训试题及答案
- 宁波市人民医院儿童哮喘持续状态救治考核
- T-CARM 002-2023 康复医院建设标准
- 《预制箱梁施工》课件
- 2023年泰安市岱岳区社区工作者招聘考试真题
- 剖宫产术后护理计划
- YE5系列(IP55)三相异步电动机(机座号132-400)
- SH3034-2012 石油化工给水排水管道设计规范
- 电炒锅操作规程
- 小学英语写作教学的思考与实践 桂婷婷
- 柴油机分类课件
- 第三章无机胶凝材料
- 卒中后认知障碍管理专家共识解读培训课件
 
            
评论
0/150
提交评论