




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省长沙市明德天心中学数学九上期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.用配方法解方程时,应将其变形为()A. B. C. D.2.如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列不等式成立的是()A.a>0 B.b<0C.ac<0 D.bc<03.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2 B.3πm2 C.2πm2 D.πm24.下列一元二次方程中有两个不相等的实数根的方程是()A.(x+2)2=0 B.x2+3=0 C.x2+2x-17=0 D.x2+x+5=05.如图,中,,,,则的长为()A. B. C.5 D.6.如图,△ABC中,AB=AC,∠ABC=70°,点O是△ABC的外心,则∠BOC的度数为()A.40° B.60° C.70° D.80°7.下列一元二次方程中,两个实数根之和为2的是()A.2x2+x﹣2=0 B.x2+2x﹣2=0 C.2x2﹣x﹣1=0 D.x2﹣2x﹣2=08.一元二次方程3x2﹣x=0的解是()A.x= B.x1=0,x2=3 C.x1=0,x2= D.x=09.抛物线的顶点坐标为()A. B. C. D.10.下列图形中,既是中心对称图形,又是轴对称图形的是()A.等边三角形 B.平行四边形 C.等腰三角形 D.菱形二、填空题(每小题3分,共24分)11.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.12.一个反比例函数的图像过点,则这个反比例函数的表达式为__________.13.如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时水深为______米.14.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是_____cm.15.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB的长为x米,则菜园的面积y(平方米)与x(米)的函数表达式为________.(不要求写出自变量x的取值范围)16.如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限.△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚10次后AB中点M经过的路径长为________17.如果,那么__________.18.圆锥侧面展开图的圆心角的度数为,母线长为5,该圆锥的底面半径为________.三、解答题(共66分)19.(10分)如图,四边形是的内接四边形,,,,求的长.20.(6分)如图,在△ABC中,∠ACB=90º,∠ABC=45º,点O是AB的中点,过A、C两点向经过点O的直线作垂线,垂足分别为E、F.(1)如图①,求证:EF=AE+CF.(2)如图②,图③,线段EF、AE、CF之间又有怎样的数量关系?请直接写出你的猜想.21.(6分)某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.22.(8分)如图,在平面直角坐标系中,点的坐标分别是,.(1)将绕点逆时针旋转得到,点,对应点分别是,,请在图中画出,并写出,的坐标;(2)以点为位似中心,将作位似变换且缩小为原来的,在网格内画出一个符合条件的.23.(8分)如图1,在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.(1)求抛物线的函数表达式;(2)若点P是位于直线BC上方抛物线上的一个动点,求△BPC面积的最大值;(3)若点D是y轴上的一点,且以B,C,D为顶点的三角形与相似,求点D的坐标;(4)若点E为抛物线的顶点,点F(3,a)是该抛物线上的一点,在轴、轴上分别找点M、N,使四边形EFMN的周长最小,求出点M、N的坐标.24.(8分)如图,在中,,是外接圆,点是圆上一点,点,分别在两侧,且,连接,延长到点,使.(1)求证:为的切线;(2)若的半径为1,当是直角三角形时,求的面积.25.(10分)如图,线段AB,A(2,3),B(5,3),抛物线y=﹣(x﹣1)2﹣m2+2m+1与x轴的两个交点分别为C,D(点C在点D的左侧)(1)求m为何值时抛物线过原点,并求出此时抛物线的解析式及对称轴和项点坐标.(2)设抛物线的顶点为P,m为何值时△PCD的面积最大,最大面积是多少.(3)将线段AB沿y轴向下平移n个单位,求当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.26.(10分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)已知AB=4,AE=1.求BF的长.
参考答案一、选择题(每小题3分,共30分)1、D【分析】二次项系数为1时,配一次项系数一半的平方即可.【详解】故选:D【点睛】本题考查的是解一元二次方程的配方法,配方法要先把二次项系数化为1,再配一次项系数一半的平方是关键.2、C【解析】试题解析:由函数图象可得各项的系数:故选C.3、B【分析】利用扇形的面积公式计算即可.【详解】解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为=3π,故选:B.【点睛】本题考查扇形的面积,解题的关键是记住扇形的面积公式.4、C【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【详解】解:选项A:△=0,方程有两个相等的实数根;选项B、△=0-12=-12<0,方程没有实数根;选项C、△=4-4×1×(-17)=4+68=72>0,方程有两个不相等的实数根;选项D、△=1-4×5=-19<0,方程没有实数根.故选:C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac;当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5、C【解析】过C作CD⊥AB于D,根据含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【详解】过C作CD⊥AB于D,则∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故选C.【点睛】本题考查解直角三角形.6、D【分析】首先根据等腰三角形的性质可得∠A的度数,然后根据圆周角定理可得∠O=2∠A,进而可得答案.【详解】解:∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠A=180°−70°×2=40°,
∵点O是△ABC的外心,
∴∠BOC=40°×2=80°,
故选:D.【点睛】此题主要考查了三角形的外接圆和外心,关键是掌握圆周角定理:在同圆或等圆中,同弧所对的圆周角等于圆心角的一半.7、D【分析】利用根与系数的关系进行判断即可.【详解】方程1x1+x﹣1=0的两个实数根之和为;方程x1+1x﹣1=0的两个实数根之和为﹣1;方程1x1﹣x﹣1=0的两个实数根之和为;方程x1﹣1x﹣1=0的两个实数根之和为1.故选D.【点睛】本题考查了根与系数的关系:若x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1,x1x1.8、C【解析】根据题意对方程提取公因式x,得到x(
3x-1)=0的形式,则这两个相乘的数至少有一个为0,由此可以解出x的值.【详解】∵3x2﹣x=0,∴x(3x﹣1)=0,∴x=0或3x﹣1=0,∴x1=0,x2=,故选C.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.9、D【解析】根据抛物线顶点式的性质进行求解即可得答案.【详解】∵解析式为∴顶点为故答案为:D.【点睛】本题考查了已知二次函数顶点式求顶点坐标,注意点坐标符号有正负.10、D【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,针对每一个选项进行分析.【详解】解:A、是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,也是中心对称图形.故此选项正确;故选D.二、填空题(每小题3分,共24分)11、k≥-1【解析】首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.【详解】当时,方程是一元一次方程:,方程有实数根;当时,方程是一元二次方程,解得:且.综上所述,关于的方程有实数根,则的取值范围是.故答案为【点睛】考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略这种情况.12、【分析】设反比例函数的解析式为y=(k≠0),把A点坐标代入可求出k值,即可得答案.【详解】设反比例函数的解析式为y=(k≠0),∵反比例函数的图像过点,∴3=,解得:k=-6,∴这个反比例函数的表达式为,故答案为:【点睛】本题考查待定系数法求反比例函数解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键.13、【详解】解:作出弧AB的中点D,连接OD,交AB于点C.则OD⊥AB.AC=AB=0.8m.在直角△OAC中,OC===0.6m.则水深CD=OD-OC=1-0.6=0.4m.【点睛】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线.14、37.1【分析】根据垂径定理求得AD=30cm,然后根据勾股定理得出方程,解方程即可求得半径.【详解】如图,设点O为外圆的圆心,连接OA和OC,∵CD=11cm,AB=60cm,∵CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为rcm,则OD=(r﹣11)cm,根据题意得:r2=(r﹣11)2+302,解得:r=37.1,∴这个摆件的外圆半径长为37.1cm,故答案为37.1.【点睛】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是解本题的关键.15、y=-x2+15x【分析】由AB边长为x米,根据已知可以推出BC=(30-x),然后根据矩形的面积公式即可求出函数关系式.【详解】∵AB边长为x米,而菜园ABCD是矩形菜园,∴BC=(30-x),菜园的面积=AB×BC=(30-x)•x,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为:y=-x2+15x,故答案为y=-x2+15x.【点睛】本题考查了二次函数的应用,正确分析,找准各量间的数量关系列出函数关系式是解题的关键.16、(4+)【分析】根据题意先作B3E⊥x轴于E,观察图象可知为三次一个循环,求点M的运动路径,进而分析求得翻滚10次后AB中点M经过的路径长.【详解】解:如图作B3E⊥x轴于E,可知OE=5,B3E=,观察图象可知为三次一个循环,一个循环点M的运动路径为:,则翻滚10次后AB中点M经过的路径长为:.故答案为:(4+).【点睛】本题考查规律题,解题的关键是灵活运用弧长公式、等边三角形的性质等知识解决问题.17、【解析】∵,根据和比性质,得==,故答案为.18、1【分析】设该圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到,然后解关于r的方程即可.【详解】设该圆锥的底面半径为r,根据题意得,解得.故答案为1.【点睛】本题考查圆锥的计算,解题的关键是知道圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题(共66分)19、.【分析】如图,连接,过点作于点,通过勾股定理确定OB、OC的长,利用AB与BE的关系确定最终答案.【详解】如解图所示,连接,过点作于点,,且,,在中,,,,,,,,,,,是的弦,过的圆心,且于点,,且,,,,.【点睛】本题考查的是圆内接四边形的性质、勾股定理,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.20、(1)见解析;(2)图②:EF=AE+CF图③:EF=AE-CF,见解析【分析】(1)连接OC,运用AAS证△AOE≌△OCF即可;(2)按(1)中的方法,连接OC,证明△AOE≌△OCF,即可得出结论【详解】(1)连接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF(2)如图②,连接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.21、(1);(2).【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=,故答案为:;(2)解:列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1)见解析,,;(2)见解析【分析】(1)利用网格特点和旋转的性质,画出点O,B对应点E,F,从而得到△AEF,然后写出E、F的坐标;
(2)分别连接OE、OF,然后分别去OA、OE、OF的三等份点得到A1、E1、F1,从而得到△A1E1F1.【详解】解:(1)如图,为所作,,(2)如图,为所作图形.【点睛】本题考查了作图-位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.23、(1);(2)△BPC面积的最大值为;(3)D的坐标为(0,1)或(0,);(4)M(,0),N(0,)【分析】(1)抛物线的表达式为:y=a(x+1)(x-5)=a(x2-4x-5),即-5a=5,解得:a=-1,即可求解;(2)利用S△BPC=×PH×OB=(-x2+4x+5+x-5)=(x-)2+,即可求解;(3)B、C、D为顶点的三角形与△ABC相似有两种情况,分别求解即可;(4)作点E关于y轴的对称点E′(-2,9),作点F(2,9)关于x轴的对称点F′(3,-8),连接E′、F′分别交x、y轴于点M、N,此时,四边形EFMN的周长最小,即可求解.【详解】解:(1)把,分别代入得:∴∴抛物线的表达式为:.(2)如图,过点P作PH⊥OB交BC于点H令x=0,得y=5∴C(0,5),而B(5,0)∴设直线BC的表达式为:∴∴∴设,则∴∴∴∴△BPC面积的最大值为.(3)如图,∵C(0,5),B(5,0)∴OC=OB,∴∠OBC=∠OCB=45°∴AB=6,BC=要使△BCD与△ABC相似则有或①当时∴则∴D(0,)②当时,CD=AB=6,∴D(0,1)即:D的坐标为(0,1)或(0,)(4)∵∵E为抛物线的顶点,∴E(2,9)如图,作点E关于y轴的对称点E'(﹣2,9),∵F(3,a)在抛物线上,∴F(3,8),∴作点F关于x轴的对称点F'(3,8),则直线E'F'与x轴、y轴的交点即为点M、N设直线E'F'的解析式为:则∴∴直线E'F'的解析式为:∴,0),N(0,).【点睛】本题为二次函数综合运用题,涉及到一次函数、对称点性质等知识点,其中(4),利用对称点性质求解是此类题目的一般解法,需要掌握.24、(1)详见解析;(2)或【分析】(1)先证,再证,得到,即可得出结论;(2)分当时和当时两种情况分别求解即可.【详解】(1)∵,∴,∵,,∴,∵是直径,∴,∴,∴,∴,∴,∴是的切线.(2)①当时,,是等边三角形,可得,∵,∴,,∴.②当时,易知,的边上的高,∴.【点睛】此题是圆的综合题,主要考查了切线的性质和判定,等边三角形的判定和性质,求三角形的面积熟练掌握切线的判定与圆周角定理是解题的关键.25、(1)当m=0或m=2时,抛物线过原点,此时抛物线的解析式是y=﹣(x﹣1)2+1,对称轴为直线x=1,顶点为(1,1);(2)m为1时△PCD的面积最大,最大面积是2;(3)n=m2﹣2m+6或n=m2﹣2m+1.【分析】(1)根据抛物线过原点和题目中的函数解析式可以求得m的值,并求出此时抛物线的解析式及对称轴和项点坐标;(2)根据题目中的函数解析式和二次函数的性质,可以求得m为何值时△PCD的面积最大,求得点C、D的坐标,由此求出△PCD的面积最大值;(3)根据题意抛物线能把线段AB分成1:2,存在两种情况,求出两种情况下线段AB与抛物线的交点,即可得到当m与n有怎样的关系时,抛物线能把线段AB分成1:2两部分.【详解】(1)当y=﹣(x﹣1)2﹣m2+2m+1过原点(0,0)时,0=﹣1﹣m2+2m+1,得m1=0,m2=2,当m1=0时,y=﹣(x﹣1)2+1,当m2=2时,y=﹣(x﹣1)2+1,由上可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新质生产力绿色出行
- 血管周细胞瘤的临床护理
- 2025典当借款合同范本C
- 沈阳高一数学试卷及答案
- 商品学期末试卷及答案
- 2025装饰装修劳务分包合同(正式)
- 智能设备用户体验设计考核试卷
- 玉米加工与农产品精深加工考核试卷
- 浙江国企招聘2025上半年嘉兴市属国有企业招聘97人笔试参考题库附带答案详解
- 纺织设备电气控制技术考核试卷
- 2024年武汉市中考物理试卷真题解读及答案解析(精校打印)
- DB51-T 5071-2011 蒸压加气混凝土砌块墙体自保温工程技术规程
- Elephant'sfriends绘本阅读(课件)人教PEP版英语三年级上册
- AQ6111-2023个体防护装备安全管理规范
- 多发性骨髓瘤肾损伤诊治指南(2024版)
- 2024年中考数学反比例函数-选择题(压轴)(试题)
- 2024-2030年中国吸脂器行业现状动态与需求趋势预测研究报告
- 【渠道视角下伊利股份营运资金管理存在的问题及优化建议探析9000字(论文)】
- 患者呼吸心跳骤停的应急预案
- (正式版)JBT 9229-2024 剪叉式升降工作平台
- 《青蒿素人类征服疾病的一小步》《一名物理学家的教育历程》联读课件高中语文必修下册
评论
0/150
提交评论