版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题02全等模型--一线三等角(K字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K字)模型)进行梳理及对应试题分析,方便掌握。模型1.一线三等角(K型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K型图”)钝角一线三等角条件:+CE=DE证明思路:+任一边相等例1.(2023·江苏·八年级假期作业)探究:如图①,在中,,,直线经过点,于点,于点,求证:.应用:如图②,在中,,三点都在直线上,并且有.求出和的关系.拓展:如图①中,若,梯形的面积______.例2.(2023春·广西·七年级期末)已知,在中,,三点都在直线m上,且.(1)如图①,若,则与的数量关系为___________,与的数量关系为___________;(2)如图②,判断并说明线段,与的数量关系;(3)如图③,若只保持,点A在线段上以的速度由点D向点E运动,同时,点C在线段上以的速度由点E向点F运动,它们运动的时间为.是否存在x,使得与全等?若存在,求出相应的t的值;若不存在,请说明理由.例3.(2022·陕西七年级期末)(1)【问题发现】如图1,△ABC与△CDE中,∠B=∠E=∠ACD=90°,AC=CD,B、C、E三点在同一直线上,AB=3,ED=4,则BE=_____.(2)【问题提出】如图2,在Rt△ABC中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积.(3)【问题解决】如图3,四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD面积为12且CD的长为6,求△BCD的面积.例4.(2023·江苏·八年级假期作业)如图,在中,,,点D在线段上运动(D不与B、C重合),连接,作,交线段于E.(1)当时,_____,_____,_____;点D从B向C运动时,逐渐变_____(填“大”或“小”);(2)当DC等于多少时,,请说明理由;(3)在点D的运动过程中,的形状可以是等腰三角形吗?若可以,请直接写出的度数,若不可以,请说明理由.模型2.一线三等角(K型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。【常见模型及证法】异侧型一线三等角:锐角一线三等角直角一线三等角钝角一线三等角条件:+任意一边相等证明思路:+任一边相等例1.(2022春·江苏宿迁·七年级校考阶段练习)如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)请直接写出AD,BE,DE之间的数量关系:.例2.(2022·无锡市九年级月考)(1)如图1,直线m经过等腰直角△ABC的直角顶点A,过点B、C分别作BD⊥m,CE⊥m,垂足分别是D、E.求证:BD+CE=DE;(2)如图2,直线m经过△ABC的顶点A,AB=AC,在直线m上取两点D、E,使∠ADB=∠AEC=α,补充∠BAC=(用α表示),线段BD、CE与DE之间满足BD+CE=DE,补充条件后并证明;(3)在(2)的条件中,将直线m绕着点A逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB=∠AEC=(用α表示).通过观察或测量,猜想线段BD、CE与DE之间满足的数量关系,并予以证明.例3.(2022秋·江苏·八年级专题练习)通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图,,,过点作于点,过点作于点.由,得.又,可以推理得到.进而得到__________,.我们把这个数学模型称为“字”模型或“一线三等角”模型;【模型应用】(2)如图,,,,连接,,且于点,与直线交于点.求证:点是的中点;【深入探究】(3)如图,已知四边形和为正方形,的面积为,的面积为,则有__________(填“>、、<”)(4)如图,点、、、、都在同一条直线上,四边形、、都是正方形,若该图形总面积是16,正方形的面积是4,则的面积是__________.课后专项训练1.(2022·湖南·长沙市二模)如图,等腰直角三角形ABC的直角顶点C与坐标原点重合,分别过点A、B作x轴的垂线,垂足为D、E,点A的坐标为(-2,5),则线段DE的长为()A. B. C. D.2.(2023·广西·八年级假期作业)如图,,,于点E,于点D,,,则的长是(
)A.8 B.4 C.3 D.23.(2023·江苏·八年级假期作业)如图所示,中,.直线l经过点A,过点B作于点E,过点C作于点F.若,则__________.
4.(2023·江苏·八年级假期作业)如图,直线l1⊥l3,l2⊥l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ等于,则OQ的长等于_____.5.(2023·浙江·九年级期末)如图,已知和均是直角三角形,,,于点.(1)求证:≌;(2)若点是的中点,,求的长.6.(2023·江苏扬州·八年级统考期中)如图,正方形ABCD中,E、F分别为边BC、CD上的点,DE=AF.(1)求证:△ADF≌△DCE;(2)求证:AF⊥DE.7.(2023·江苏·八年级假期作业)王强同学用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(),点在上,点和分别与木墙的顶端重合.(1)求证:;(2)求两堵木墙之间的距离.
8.(2023·江苏·八年级假期作业)综合与实践数学活动课上,老师让同学们以“过等腰三角形顶点的直线”为主题开展数学探究.(1)操作发现:如图甲,在中,,且,直线l经过点A.小华分别过B、C两点作直线l的垂线,垂足分别为点D、E.易证,此时,线段、、的数量关系为:_______;(2)拓展应用:如图乙,为等腰直角三角形,,已知点C的坐标为,点B的坐标为.请利用小华的发现直接写出点A的坐标:_____;(3)迁移探究:①如图丙,小华又作了一个等腰,,且,她在直线l上取两点D、E,使得,请你帮助小华判断(1)中线段、、的数量关系是否变化,若不变,请证明;若变化,写出它们的关系式并说明理由;②如图丁,中,,,点D、E在直线上,且,请直接写出线段、、的数量关系.9.(2022·江苏·九年级专题练习)【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,是等腰直角三角形,,AE=BD,则_______;②如图2,为正三角形,,则________;③如图3,正方形的顶点B在直线l上,分别过点A、C作于E,于F.若,,则的长为________.【模型应用】(2)如图4,将正方形放在平面直角坐标系中,点O为原点,点A的坐标为,则点C的坐标为________.【模型变式】(3)如图5所示,在中,,,于E,AD⊥CE于D,,,求的长.10.(2023·江苏·八年级假期作业)如图1,,垂足分别为D,E.(1)若,求的长.(2)在其它条件不变的前提下,将所在直线变换到的外部(如图2),请你猜想三者之间的数量关系,并证明你的结论;(3)如图3,将(1)中的条件改为:在中,,D,C,E三点在同一条直线上,并且有,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.11.(2022秋·江苏·八年级期末)【基础模型】已知等腰直角△ABC,∠ACB=90°,AC=CB,过点C任作一条直线l(不与CA、CB重合),过点A作AD⊥l于D,过点B作BE⊥l于E.(1)如图②,当点A、B在直线l异侧时,求证:△ACD≌△CBE【模型应用】在平面直角坐标性xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x轴交于点A,与y轴的负半轴交于点B.以AB为边、B为直角顶点作等腰直角△ABC.(2)若直线l经过点(2,﹣3),当点C在第三象限时,点C的坐标为.(3)若D是函数y=x(x<0)图象上的点,且BD∥x轴,当点C在第四象限时,连接CD交y轴于点E,则EB的长度为.(4)设点C的坐标为(a,b),探索a,b之间满足的等量关系,直接写出结论.(不含字母k)12.(2022秋·江苏·八年级期末)阅读下列材料,并按要求解答.【模型建立】如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.【模型应用】应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=200.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.13.(2022·江苏镇江·二模)模型构建:如图1,于点M,于点N,AB的垂直平分线交MN于点P,连接AP、BP.若,求证:.数学应用:如图2,在中,D是BC上一点,,,,求的面积.实际运用:建设“交通强国”是满足人民日益增长的美好生活需要的必然要求.建设“美丽公路”是落实美丽中国建设、回应人民日益增长的美好生活对优美生态环境的需要.如图3是某地一省道与国道相交处的示意图,点Q处是一座古亭,鹅卵石路QA、QB以及两旁栽有常青树,其它区域种植不同的花卉;设计要求,,是以Q为圆心、QA为半径的圆弧(不计路宽,下同).请在图4中画出符合条件的设计图,要求尺规作图,保留作图痕迹,标注必要的字母,写出详细的作法,不要求说明理由;14.(2022秋·内蒙古呼和浩特·八年级期末)已知△ABC中,∠ACB=90°,AC=BC.BE、AD分别与过点C的直线垂直,且垂足分别为D,E.学习完第十二章后,张老师首先让同学们完成问题1:如图1,若AD=2.5cm,DE=1.7cm,求BE的长;然后,张老师又提出问题2:将图1中的直线CE绕点C旋转到△ABC的外部,BE、AD与直线CE的垂直关系不变,如图2,猜想AD、DE、BE三者的数量关系,并给予证明.15.(2022秋·八年级课时练习)(1)课本习题回放:“如图①,,,,,垂足分别为,,,.求的长”,请直接写出此题答案:的长为________.(2)探索证明:如图②,点,在的边、上,,点,在内部的射线上,且.求证:.(3)拓展应用:如图③,在中,,.点在边上,,点、在线段上,.若的面积为15,则与的面积之和为________.(直接填写结果,不需要写解答过程)16.(2023春·广东·七年级专题练习)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDE=115°时,∠BAD=°,点D从B向C运动时,∠BAD逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BAD等于多少时,△ADE是等腰三角形.17.(2022秋·四川南充·八年级校考期中)(1)某学习小组在探究三角形全等时,发现了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学中国古代文学(元曲鉴赏)试题及答案
- 小说复习指导
- 2026年武器装备日常检查与登记统计试题含答案
- 政府干部活动策划方案(3篇)
- 人工识别活动策划方案(3篇)
- 2026年烟草专卖市场稽查岗位笔试高频考点手册含答案
- 2026年中国人寿招聘考试题库与答案解析
- 2026年人工智能行业智能客服解决方案报告
- 2025年光伏发电行业政策分析报告
- 2026年交通运输行业智能交通系统报告及自动驾驶创新报告
- 2025年国家开放大学《管理学基础》期末考试备考试题及答案解析
- 黑龙江省安达市职业能力倾向测验事业单位考试综合管理类A类试题带答案
- (正式版)DB32∕T 5156-2025 《零碳园区建设指南》
- 2025年人教版八年级英语上册各单元词汇知识点和语法讲解与练习(有答案详解)
- 智慧林业云平台信息化建设详细规划
- 监控综合维保方案(3篇)
- 犊牛兽医工作总结
- JJF(陕) 125-2025 医用移动式 C 形臂 X 射线辐射源校准规范
- 2025届重庆八中学七上数学期末复习检测模拟试题含解析
- 烫熨治疗法讲课件
- 2025年江苏省事业单位招聘考试教师招聘体育学科专业知识试题
评论
0/150
提交评论