版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古呼和浩特市重点名校2024届高一数学第二学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线经过,两点,则直线的斜率为A. B. C. D.2.如图,已知平行四边形,,则()A. B.C. D.3.设,则的大小关系为()A. B. C. D.4.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|)的部分图象如图所示,则f(x)的解析式为()A.f(x)=sin(x)﹣1 B.f(x)=2sin(x)﹣1C.f(x)=2sin(x)﹣1 D.f(x)=2sin(2x)+15.l:与两坐标轴所围成的三角形的面积为A.6 B.1 C. D.36.某学生4次模拟考试英语作文的减分情况如下表:显然与之间有较好的线性相关关系,则其线性回归方程为()A. B.C. D.7.设,则A.-1 B.1 C.ln2 D.-ln28.下列平面图形中,通过围绕定直线旋转可得到如图所示几何体的是()A. B. C. D.9.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为A.5 B.10 C.4 D.2010.已知,则的值等于()A.2 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.下列结论中正确的是______.(1)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像;(2)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;(3)将图像上所有点的横坐标扩大为原来的倍,再将图像向左平移个单位,得到的图像;(4)将图像上所有点的横坐标变为原来的倍,再将图像向左平移个单位,得到的图像;(5)将图像向左平移个单位,再将所有点的横坐标扩大为原来的倍,得到的图像;12.已知函数,下列说法:①图像关于对称;②的最小正周期为;③在区间上单调递减;④图像关于中心对称;⑤的最小正周期为;正确的是________.13.已知圆是圆上的一条动直径,点是直线上的动点,则的最小值是____.14.已知圆的圆心在直线上,半径为,若圆上存在点,它到定点的距离与到原点的距离之比为,则圆心的纵坐标的取值范围是__________.15.若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是______.16.方程的解集是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.数学的发展推动着科技的进步,正是基于线性代数、群论等数学知识的极化码原理的应用,华为的5G技术领先世界.目前某区域市场中5G智能终端产品的制造由H公司及G公司提供技术支持据市场调研预测,5C商用初期,该区域市场中采用H公司与G公司技术的智能终端产品分别占比及假设两家公司的技术更新周期一致,且随着技术优势的体现每次技术更新后,上一周期采用G公司技术的产品中有20%转而采用H公司技术,采用H公司技术的仅有5%转而采用G公司技术设第n次技术更新后,该区域市场中采用H公司与G公司技术的智能终端产品占比分别为及,不考虑其它因素的影响.(1)用表示,并求实数使是等比数列;(2)经过若干次技术更新后该区域市场采用H公司技术的智能终端产品占比能否达到75%以上?若能,至少需要经过几次技术更新;若不能,说明理由?(参考数据:)18.在直角坐标系中,点,圆的圆心为,半径为2.(Ⅰ)若,直线经过点交圆于、两点,且,求直线的方程;(Ⅱ)若圆上存在点满足,求实数的取值范围.19.四棱柱中,底面为正方形,,为中点,且.(1)证明;(2)求点到平面的距离.20.已知数列的前项和为,满足且,数列的前项为,满足(Ⅰ)设,求证:数列为等比数列;(Ⅱ)求的通项公式;(Ⅲ)若对任意的恒成立,求实数的最大值.21.记数列的前项和为,已知点在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
由两点法求斜率的公式可直接计算斜率值.【题目详解】直线经过,两点,直线的斜率为.【题目点拨】本题考查用两点法求直线斜率,属于基础题.2、A【解题分析】
根据平面向量的加法运算,即可得到本题答案.【题目详解】由题,得.故选:A【题目点拨】本题主要考查平面向量的加法运算,属基础题.3、B【解题分析】
不难发现从而可得【题目详解】,故选B.【题目点拨】本题考查利用指数函数和对数函数的单调性比较数大小.4、D【解题分析】
由已知列式求得的值,再由周期求得的值,利用五点作图的第二个点求得的值,即可得到答案.【题目详解】由题意,根据三角函数的图象,可得,解得,又由,解得,则,又由五点作图的第二个点可得:,解得,所以函数的解析式为,故选D.【题目点拨】本题主要考查了由的部分图象求解函数的解析式,其中解答中熟记三角函数的五点作图法,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于中档试题.5、D【解题分析】
先求出直线与坐标轴的交点,再求三角形的面积得解.【题目详解】当x=0时,y=2,当y=0时,x=3,所以三角形的面积为.故选:D【题目点拨】本题主要考查直线与坐标轴的交点的坐标的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.6、D【解题分析】
求出样本数据的中心,代入选项可得D是正确的.【题目详解】,所以这组数据的中心为,对选项逐个验证,可知只有过样本点中心.【题目点拨】本题没有提供最小二乘法的公式,所以试题的意图不是考查公式计算,而是要考查回归直线过样本点中心这一概念.7、C【解题分析】
先把化为,再根据公式和求解.【题目详解】故选C.【题目点拨】本题考查对数、指数的运算,注意观察题目之间的联系.8、B【解题分析】A.是一个圆锥以及一个圆柱;C.是两个圆锥;D.一个圆锥以及一个圆柱;所以选B.9、B【解题分析】
直接利用分层抽样按照比例抽取得到答案.【题目详解】设应抽取的女生人数为,则,解得.故答案选B【题目点拨】本题考查了分层抽样,属于简单题.10、D【解题分析】
根据分段函数的定义域以及函数解析式的关系,代值即可.【题目详解】故选:D【题目点拨】本题考查了分段函数的求值问题,考查了学生综合分析,数学运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(3)【解题分析】
根据三角函数图像伸缩变换与平移变换的原则,逐项判断,即可得出结果.【题目详解】(1)将图像向左平移个单位,得到的图像,再将所有点的横坐标扩大为原来的倍,得到的图像;(1)正确;(2)将图像上所有点的横坐标扩大为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(2)错;(3)将图像上所有点的横坐标扩大为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(3)正确;(4)将图像上所有点的横坐标变为原来的倍,得到的图像,再将图像向左平移个单位,得到的图像;(4)错;(5)将图像向左平移个单位,得到的图像,再将所有点的横坐标扩大为原来的倍,得到的图像;(5)错;故答案为(1)(3)【题目点拨】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.12、②③⑤【解题分析】
将函数解析式改写成:,即可作出函数图象,根据图象即可判定.【题目详解】由题:,,所以函数为奇函数,,是该函数的周期,结合图象分析是其最小正周期,,作出函数图象:可得,该函数的最小正周期为,图像不关于对称;在区间上单调递减;图像不关于中心对称;故答案为:②③⑤【题目点拨】此题考查三角函数图象及其性质的辨析,涉及周期性,对称性和单调性,作为填空题,恰当地利用图象解决问题能够起到事半功倍的作用.13、【解题分析】
由题意得,==﹣=,即可求的最小值.【题目详解】圆,得,则圆心C(1,2),半径R=,如图可得:==﹣=,点是直线上,所以=()2=,∴的最小值是=.故答案为:.【题目点拨】本题考查了向量的数量积、转化和数形结合的思想,点到直线的距离,属于中档题.14、【解题分析】因为圆心在直线上,设圆心,则圆的方程为,设点,因为,所以,化简得,即,所以点在以为圆心,为半径的圆上,则,即,整理得,由,得,由,得,所以圆心的纵坐标的取值范围是.点睛:本题主要考查了圆的方程,动点的轨迹方程、两圆的位置关系、解不等式等知识的综合运用,着重考查了转化与化归思想和学生的运算求解能力,解答中根据题设条件得到动点的轨迹方程,利用两圆的位置关系,列出不等式上解答的关键.对于直线与圆的位置关系问题,要熟记有关圆的性质,同时注意数形结合思想的灵活运用.15、【解题分析】
先求出扇形的半径,再求这个圆心角所夹的扇形的面积.【题目详解】设扇形的半径为R,由题得.所以扇形的面积为.故答案为:【题目点拨】本题主要考查扇形的半径和面积的计算,意在考查学生对这些知识的理解掌握水平.16、【解题分析】
令,,将原方程化为关于的一元二次方程,解出得到,进而得出方程的解集.【题目详解】令,,故原方程可化为,解得或,故而或,即方程的解集是,故答案为.【题目点拨】本题主要考查了指数方程的解法,转化为一元二次方程是解题的关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)见解析【解题分析】
(1)根据题意经过次技术更新后,通过整理得到,构造是等比数列,求出,得证;(2)由(1)可求出通项,令,通过相关计算即可求出n的最小值,从而得到答案.【题目详解】(1)由题意,可设5商用初期,该区域市场中采用H公司与G公司技术的智能终端产品的占比分别为.易知经过次技术更新后,则,①由①式,可设,对比①式可知.又.从而当时,是以为首项,为公比的等比数列.(2)由(1)可知,所以经过次技术更形后,该区域市场采用H公司技术的智能终端产品占比.由题意,令,得.故,即至少经过6次技术更新,该区域市场采用H公司技术的智能终端产品占比能达到75%以上.【题目点拨】本题主要考查数列的实际应用,等比数列的证明,数列与不等式的相关计算,综合性强,意在考查学生的阅读理解能力,转化能力,分析能力,计算能力,难度较大.18、(Ⅰ)或.(Ⅱ)【解题分析】
(Ⅰ)勾股定理求出圆心到直线的距离d,利用d=1以直线的斜率存在、不存在两种情况进行分类讨论;(Ⅱ)设,由求出x、y满足的关系式,可得点在圆上,推出圆与圆有公共点,所以,列出不等式求解即可.【题目详解】(Ⅰ)当,圆心为,圆的方程为,设圆心到直线的距离为,则.①若直线的斜率存在,设直线的方程为,即,,解得,此时的方程为,即.②若直线的斜率不存在,直线的方程为,验证满足,符合题意.综上所述,直线的方程为或.(Ⅱ)设,则,于是由得,即,所以点在圆上,又点在圆上,故圆与圆有公共点,即,于是,解得,因此实数的取值范围是.【题目点拨】本题考查直线与圆的位置关系的综合应用,向量的数量积,根据圆与圆的位置关系求参数,属于中档题.19、(1)见解析;(2).【解题分析】试题分析:(1)证明线线垂直,一般利用线面垂直性质定理,即利用线面垂直进行证明,而证明线面垂直,则利用线面垂直判定定理,即从已知的线线垂直出发给予证明,本题利用平几知识,如等边三角形性质、正方形性质得线线垂直,(2)求点到直线距离,一般方法利用等体积法转化为求高.试题解析:(1)等边中,为中点,又,且在正方形中,(2)中,,由(1)知,等体积法可得点到平面的距离为.20、(Ⅰ)见解析(Ⅱ)(Ⅲ)【解题分析】
(Ⅰ)对递推公式变形可得,根据等比数列的定义,即可得证;(Ⅱ)化简可得,然后再利用裂项相消法求和,即可得到结果;(Ⅲ)先求出,然后再利用分组求和求出,然后再利用分离常数法,可得,最后对进行分类讨论,即可求出结果.【题目详解】解:(Ⅰ)由得,变形为:,,且∴数列是以首项为2,公比为的等比数列(Ⅱ)由;(Ⅲ)由(Ⅰ)知数列是以首项为2,公比为的等比数列∴,于是∴=,由得从而,∴当n为偶数时,恒成立,而,∴1当n为奇
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年天津职业大学单招职业适应性考试备考题库及答案解析
- 2026年南昌理工学院单招职业适应性考试备考试题及答案解析
- 2026年江苏电子信息职业学院单招职业适应性测试参考题库及答案解析
- 2026年上海电机学院单招职业适应性测试模拟试题及答案解析
- 2026年郑州理工职业学院单招职业适应性考试备考试题及答案解析
- 2026年浙江机电职业技术学院单招职业适应性考试参考题库及答案解析
- 2026年石家庄科技信息职业学院单招职业适应性考试备考试题及答案解析
- 期末考试反思与总结范文8篇
- 2026年太原城市职业技术学院单招职业适应性考试备考题库及答案解析
- 期末考试工作总结14篇
- 讲给老年人听的助听器
- 大清包劳务合同样本及条款解读
- 医德医风建设专题党课讲稿:坚守医者仁心 永葆清廉本色
- 2025年低空经济行业碳排放核算方法与案例分析报告
- 生物学英汉词汇
- DBJ04-T511-2025 城市桥梁生命线安全工程监测技术标准
- 2025年国家开放大学(电大)《计算机组成原理》期末考试备考试题及答案解析
- T-CAV 011-2025 预防接种不良反应个案评估技术规范
- 生物电导率与细胞分化-洞察及研究
- 年生产加工钠离子电池负极材料8000 吨、锂离子电池负极材料3000吨项目环境风险专项评价报告
- 绿化工程分包合同协议书3篇
评论
0/150
提交评论