陕西省铜川市同官高级中学2024届数学高一第二学期期末教学质量检测试题含解析_第1页
陕西省铜川市同官高级中学2024届数学高一第二学期期末教学质量检测试题含解析_第2页
陕西省铜川市同官高级中学2024届数学高一第二学期期末教学质量检测试题含解析_第3页
陕西省铜川市同官高级中学2024届数学高一第二学期期末教学质量检测试题含解析_第4页
陕西省铜川市同官高级中学2024届数学高一第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省铜川市同官高级中学2024届数学高一第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数y=sinx-πA.y=sin1C.y=sin12.已知向量,,若与的夹角为,则()A.2 B. C. D.13.已知中,,,的对边分别是,,,且,,,则边上的中线的长为()A. B.C.或 D.或4.在中,角,,所对的边分别为,,,且边上的高为,则的最大值是()A.8 B.6 C. D.45.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么互斥而不对立的两个事件是()A.至少有1名男生和至少有1名女生B.至多有1名男生和都是女生C.至少有1名男生和都是女生D.恰有1名男生和恰有2名男生6.设是两条不同的直线,是两个不同的平面,则下列叙述正确的是()①若,则;②若,则;③若,则;④若,则.A.①② B.③④ C.①③ D.②④7.已知水平放置的是按“斜二测画法”得到如图所示的直观图,其中,,那么原中的大小是().A. B. C. D.8.某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18C.24 D.309.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为()A.50% B.30% C.10% D.60%10.“数列为等比数列”是“数列为等比数列”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.非充分非必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足,且对于任意的,都有,则___;数列前10项的和____.12.设等差数列的前项和为,若,,则______.13.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边过点,则_______;_______.14.若是方程的解,其中,则________.15.若满足约束条件,的最小值为,则________.16.已知,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.18.已知数列满足:,,.(1)求、、;(2)求证:数列为等比数列,并求其通项公式;(3)求和.19.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1//平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=2,求三棱锥C一A1DE的体积.20.在中,边所在的直线方程为,其中顶点的纵坐标为1,顶点的坐标为.(1)求边上的高所在的直线方程;(2)若的中点分别为,,求直线的方程.21.已知向量a=(sinθ,1),b(1)若a⊥b,求(2)求|a

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

将函数y=sin(x-π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(12x-π3),再向左平移π3个单位得到的解析式为y=sin(12(x+π3)-2、B【解题分析】

先计算与的模,再根据向量数量积的性质即可计算求值.【题目详解】因为,,所以,.又,所以,故选B.【题目点拨】本题主要考查了向量的坐标运算,向量的数量积,向量的模的计算,属于中档题.3、C【解题分析】

由已知利用余弦定理可得,解得a值,由已知可求中线,在中,由余弦定理即可计算AB边上中线的长.【题目详解】解:,由余弦定理,可得,整理可得:,解得或1.如图,CD为AB边上的中线,则,在中,由余弦定理,可得:,或,解得AB边上的中线或.故选C.【题目点拨】本题考查余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.4、D【解题分析】,这个形式很容易联想到余弦定理:cosA,①而条件中的“高”容易联想到面积,bcsinA,即a2=2bcsinA,②将②代入①得:b2+c2=2bc(cosA+sinA),∴=2(cosA+sinA)=4sin(A+),当A=时取得最大值4,故选D.点睛:三角形中最值问题,一般转化为条件最值问题:先根据正、余弦定理及三角形面积公式结合已知条件灵活转化边和角之间的关系,利用基本不等式或函数方法求最值.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.5、D【解题分析】试题分析:A中两事件不是互斥事件;B中不是互斥事件;C中两事件既是互斥事件又是对立事件;D中两事件是互斥但不对立事件考点:互斥事件与对立事件6、D【解题分析】可以线在平面内,③可以是两相交平面内与交线平行的直线,②对④对,故选D.7、C【解题分析】

根据斜二测画法还原在直角坐标系的图形,进而分析出的形状,可得结论.【题目详解】如图:根据斜二测画法可得:,故原是一个等边三角形故选【题目点拨】本题是一道判定三角形形状的题目,主要考查了平面图形的直观图,考查了数形结合的思想8、C【解题分析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,所以几何体的体积为V=1考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.9、A【解题分析】

甲不输的概率等于甲获胜或者平局的概率相加,计算得到答案.【题目详解】甲不输的概率等于甲获胜或者平局的概率相加甲、乙下成平局的概率为:故答案选A【题目点拨】本题考查了互斥事件的概率,意在考查学生对于概率的理解.10、A【解题分析】

数列是等比数列与命题是等比数列是否能互推,然后根据必要条件、充分条件和充要条件的定义进行判断.【题目详解】若数列是等比数列,则,∴,∴数列是等比数列,若数列是等比数列,则,∴,∴数列不是等比数列,∴数列是等比数列是数列是等比数列的充分非必要条件,故选:A.【题目点拨】本题主要考查充分不必要条件的判断,注意等比数列的性质的灵活运用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、,【解题分析】试题分析:由得由得,所以数列为等比数列,因此考点:等比数列通项与和项12、10【解题分析】

将和用首项和公差表示,解方程组,求出首项和公式,利用公式求解.【题目详解】设该数列的公差为,由题可知:,解得,故.故答案为:10.【题目点拨】本题考查由基本量计算等差数列的通项公式以及前项和,属基础题.13、【解题分析】

根据三角函数的定义直接求得的值,即可得答案.【题目详解】∵角终边过点,,∴,,,∴.故答案为:;.【题目点拨】本题考查三角函数的定义,考查运算求解能力,属于基础题.14、或【解题分析】

将代入方程,化简结合余弦函数的性质即可求解.【题目详解】由题意可得:,即所以或又所以或故答案为:或【题目点拨】本题主要考查了三角函数求值问题,属于基础题.15、4【解题分析】

由约束条件得到可行域,取最小值时在轴截距最小,通过直线平移可知过时,取最小值;求出点坐标,代入构造出方程求得结果.【题目详解】由约束条件可得可行域如下图阴影部分所示:取最小值时,即在轴截距最小平移直线可知,当过点时,在轴截距最小由得:,解得:本题正确结果:【题目点拨】本题考查现行规划中根据最值求解参数的问题,关键是能够明确最值取得的点,属于常考题型.16、【解题分析】

直接利用二倍角公式,即可得到本题答案.【题目详解】因为,所以,得,由,所以.故答案为:【题目点拨】本题主要考查利用二倍角公式求值,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在(3)1【解题分析】

(Ⅰ),得,解得,或.由于,所以.因为,所以.故,整理,得,即.因为是递增数列,且,故,因此.则数列是以2为首项,为公差的等差数列.所以.………………5分(Ⅱ)满足条件的正整数不存在,证明如下:假设存在,使得,则.整理,得,①显然,左边为整数,所以①式不成立.故满足条件的正整数不存在.……1分(Ⅲ),不等式可转化为.设,则.所以,即当增大时,也增大.要使不等式对于任意的恒成立,只需即可.因为,所以.即.所以,正整数的最大值为1.………14分18、(1);(2)证明见解析;(3).【解题分析】

(1)直接带入递推公式即可(2)证明等于一个常数即可。(3)根据(2)的结果即可求出,从而求出。【题目详解】(1),,可得;,;(2)证明:,可得数列为公比为,首项为等比数列,即;(3)由(2)可得,.【题目点拨】本题主要考查了根据通项求数列中的某一项,以及证明是等比数列和求前偶数项和的问题,在这里主要用了分组求和的方法。19、(Ⅰ)见解析(Ⅱ)【解题分析】试题分析:(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.进而求得S△A1DE的值,再根据三棱锥C-A1DE的体积为•S△A1DE•CD,运算求得结果试题解析:(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1∥DF.3分因为DF⊂平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱锥C﹣A1DE的体积为:==1.12分考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积20、(1);(2)【解题分析】

(1)由题易知边上的高过,斜率为3,可得结果.(1)求得点A的坐标可得点E的坐标,易知直线EF和直线AB的斜率一样,可得方程.【题目详解】(1)边上的高过,因为边上的高所在的直线与所在的直线互相垂直,故其斜率为3,方程为:(2)由题点坐标为,的中点是的一条中位线,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论