




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省天水第一中学2024届数学高一第二学期期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设公差为-2的等差数列,如果,那么等于()A.-182 B.-78 C.-148 D.-822.已知,向量,则向量()A. B. C. D.3.在中,角的对边分别为,若,则形状是()A.直角三角形 B.等腰三角形C.等腰直角三角形 D.等腰或直角三角形4.一个三棱锥的三视图如图所示,则该棱锥的全面积为()A. B. C. D.5.在中,,点P是直线BN上一点,若,则实数m的值是()A.2 B. C. D.6.式子的值为()A. B.0 C.1 D.7.若圆心坐标为的圆,被直线截得的弦长为,则这个圆的方程是()A. B.C. D.8.函数的图象如图所示,为了得到的图象,可将的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位9.已知等差数列中,,,则的值为()A.51 B.34 C.64 D.51210.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数(是常数,).若在区间上具有单调性,且,则的最小正周期为_________.12.已知,且,.则的值是________.13.已知,,则______.14.(理)已知函数,若对恒成立,则的取值范围为.15.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一个周期的图象,则f(1)=__________.16.设等差数列的前项和为,若,,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的最小正周期;(2)求函数的最小值及相应的值.18.如图,在平面直角坐标系中,单位圆上存在两点,满足均与轴垂直,设与的面积之和记为.若,求的值;若对任意的,存在,使得成立,且实数使得数列为递增数列,其中求实数的取值范围.19.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的值域.20.如图,在中,,,,.(Ⅰ)求AB;(Ⅱ)求AD.21.已知函数,.(1)将化为的形式(,,)并求的最小正周期;(2)设,若在上的值域为,求实数、的值;(3)若对任意的和恒成立,求实数取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
根据利用等差数列通项公式及性质求得答案.【题目详解】∵{an}是公差为﹣2的等差数列,∴a3+a6+a9+…+a99=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)=a1+a4+a7++a97+33×2d=50﹣132=﹣1.故选D.【题目点拨】本题主要考查了等差数列的通项公式及性质的应用,考查了运算能力,属基础题.2、A【解题分析】
由向量减法法则计算.【题目详解】.故选A.【题目点拨】本题考查向量的减法法则,属于基础题.3、D【解题分析】
由,利用正弦定理化简可得sin2A=sin2B,由此可得结论.【题目详解】∵,∴由正弦定理可得,∴sinAcosA=sinBcosB,∴sin2A=sin2B,∴2A=2B或2A+2B=π,∴A=B或A+B=,∴△ABC的形状是等腰三角形或直角三角形故选D.【题目点拨】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题.4、A【解题分析】
数形结合,还原出该几何体的直观图,计算出各面的面积,可得结果.【题目详解】如图为等腰直角三角形,平面根据三视图,可知点到的距离为点到的距离为所以,故该棱锥的全面积为故选:A【题目点拨】本题考查三视图还原,并求表面积,难点在于还原几何体,对于一些常见的几何体要熟悉其三视图,对解题有很大帮助,属中档题.5、B【解题分析】
根据向量的加减运算法则,通过,把用和表示出来,即可得到的值.【题目详解】在中,,点是直线上一点,所以,又三点共线,所以,即.故选:B.【题目点拨】本题考查实数值的求法,解题时要认真审题,注意平面向量加法法则的合理运用,属于基础题.6、D【解题分析】
利用两角和的正弦公式可得原式为cos(),再由特殊角的三角函数值可得结果.【题目详解】cos()=coscos,故选D.【题目点拨】本题考查两角和的余弦公式,熟练掌握两角和与差的余弦公式以及特殊角的三角函数值是解题的关键,属于基础题.7、B【解题分析】
设出圆的方程,求出圆心到直线的距离,利用圆心到直线的距离、半径和半弦长满足勾股定理,求得圆的半径,即可求得圆的方程,得到答案.【题目详解】由题意,设圆的方程为,则圆心到直线的距离为,又由被直线截得的弦长为,则,所以所求圆的方程为,故选B.【题目点拨】本题主要考查了圆的方程的求解,以及直线与圆的弦长的应用,其中解答中熟记直线与圆的位置关系,合理利用圆心到直线的距离、半径和半弦长满足勾股定理是解答的关键,着重考查了推理与运算能力,属于基础题.8、A【解题分析】
函数过代入解得,再通过平移得到的图像.【题目详解】,函数过向右平移个单位得到的图象故答案选A【题目点拨】本题考查了三角函数图形,求函数表达式,函数平移,意在考查学生对于三角函数图形的理解.9、A【解题分析】
根据等差数列性质;若,则即可。【题目详解】因为为等差数列,所以,,所以选择A【题目点拨】本题主要考查了等差数列比较重要的一个性质;在等差数列中若,则,属于基础题。10、A【解题分析】
求出函数的周期,函数的奇偶性,判断求解即可.【题目详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A.考点:三角函数的性质.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
由在区间上具有单调性,且知,函数的对称中心为,由知函数的对称轴为直线,设函数的最小正周期为,所以,,即,所以,解得,故答案为.考点:函数的对称性、周期性,属于中档题.12、2【解题分析】
.13、【解题分析】
直接利用二倍角公式,即可得到本题答案.【题目详解】因为,所以,得,由,所以.故答案为:【题目点拨】本题主要考查利用二倍角公式求值,属基础题.14、【解题分析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.15、2【解题分析】
由三角函数图象,利用三角函数的性质,求得函数的解析式,即可求解的值,得到答案.【题目详解】由三角函数图象,可得,由,得,于是,又,即,解得,所以,则.【题目点拨】本题主要考查了由三角函数的部分图象求解函数的解析式及其应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.16、-6【解题分析】
由题意可得,求解即可.【题目详解】因为等差数列的前项和为,,所以由等差数列的通项公式与求和公式可得解得.故答案为-6.【题目点拨】本题考查了等差数列的通项公式与求和公式,考查了学生的计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)的最小值为,此时.【解题分析】
通过倍角公式,把化成标准形式,研究函数的相关性质(周期性,单调性,奇偶性,对称性,最值及最值相对于的变量),从而本题能顺利完成【题目详解】(1)因为.所以函数的最小正周期为.(2)当时,,此时,,,所以的最小值为,此时.【题目点拨】该类型考题关键是将化成性质,只有这样,我们才能很好的去研究他的性质.18、(1)或(2)【解题分析】
(1)运用三角形的面积公式和三角函数的和差公式,以及特殊角的函数值,可得所求角;(2)由正弦函数的值域可得的最大值,再由基本不等式可得的最大值,可得的范围,再由数列的单调性,讨论的范围,即可得到的取值范围.【题目详解】依题意,可得,由,得,又,所以.由得因为,所以,所以,当时,,(当且仅当时,等号成立)又因为对任意,存在,使得成立,所以,即,解得,因为数列为递增数列,且,所以,从而,又,所以,从而,又,①当时,,从而,此时与同号,又,即,②当时,由于趋向于正无穷大时,与趋向于相等,从而与趋向于相等,即存在正整数,使,从而,此时与异号,与数列为递增数列矛盾,综上,实数的取值范围为.【题目点拨】本题主要考查了三角函数的定义,三角函数的恒等变换,以及不等式恒成立,存在性问题解法和数列的单调性的判断和运用,试题综合性强,属于难题,着重考查了推理与运算能力,以及分析问题和解答问题的能力.19、(1);(2)【解题分析】
(1)由二倍角公式,并结合辅助角公式可得,再利用周期可求出答案;(2)由的范围,可求得的范围,进而可求出的范围,从而可求得的值域.【题目详解】(1),∴函数的最小正周期为.(2)∵,∴,∴,∴,∴函数在区间的值域为.【题目点拨】本题考查三角函数的恒等变换,考查三角函数的周期及值域,考查学生的计算求解能力,属于基础题.20、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ)利用余弦定理,解得的长;(Ⅱ)利用正弦定理得,计算得,,再利用为直角三角形,进而可计算的长.【题目详解】(Ⅰ)在中,由余弦定理有,即,解得或(舍),所以.(Ⅱ)由(Ⅰ)得,在中,由正弦定理有,得,,所以,,又,则为直角三角形,所以,即,故.【题目点拨】本题考查余弦定理和正弦定理的简单应用,属于基础题.21、(1),;(2),,或,;(3).【解题分析】
(1)由三角函数的恒等变换公式和正弦函数的周期的公式,即可求解;(2)由正弦函数的图象与性质,讨论的范围,得到的方程组,即可求得的值;(3)对讨论奇数和偶数,由参数分离和函数的最值,即可求得的范围.【题目详解】(1)由题意,函数所以函数的最小正周期为.(2)由(1)知,当时,则,所以,即,令,则,函数,即,,当时,在为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025保险公司短期借款合同范本
- 2025简易店铺租赁合同范本
- 2025YY餐饮管理公司学校食堂承包合同样本
- 2025房屋租赁合同样本范文
- 2025浙江省新劳动合同范本【全日制】
- 2025合同履行证据
- 《法律知识普及》课件
- 创业投资策略课件
- 2025年国有企业土地使用权转让合同示范文本
- 《市场趋势研讨》课件
- 2024年上海奉贤投资(集团)限公司招聘3人历年公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 2024年浙江省海港投资运营集团有限公司招聘笔试冲刺题(带答案解析)
- 将军饮马18道典型习题
- YY/T 1256-2024解脲脲原体核酸检测试剂盒
- 钢筋优化技术创效手册(2022年)
- 美丽的西双版纳课件
- 调到新单位的简短发言8篇
- (2024年)初中七年级历史学习心得交流
- 员工心理健康与调适课件
- 学校心肺复苏
- 动火作业安全检查表
评论
0/150
提交评论