2024届西藏自治区日喀则市南木林高中数学高一下期末统考模拟试题含解析_第1页
2024届西藏自治区日喀则市南木林高中数学高一下期末统考模拟试题含解析_第2页
2024届西藏自治区日喀则市南木林高中数学高一下期末统考模拟试题含解析_第3页
2024届西藏自治区日喀则市南木林高中数学高一下期末统考模拟试题含解析_第4页
2024届西藏自治区日喀则市南木林高中数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届西藏自治区日喀则市南木林高中数学高一下期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,若,则实数a的值为A. B.2或 C.或1 D.2.已知,若、、三点共线,则为()A. B. C. D.23.某校统计了1000名学生的数学期末考试成绩,已知这1000名学生的成绩均在50分到150分之间,其频率分布直方图如图所示,则这1000名学生中成绩在130分以上的人数为()A.10 B.20 C.40 D.604.甲乙两名同学6次考试的成绩统计如右图,甲乙两组数据的平均数分别为,标准差分别为则()A. B.C. D.5.在中,根据下列条件解三角形,其中有一解的是()A.,,B.,,C.,,D.,,6.用数学归纳法证明的过程中,设,从递推到时,不等式左边为()A. B.C. D.7.函数的图象向右平移个单位后,得到函数的图象,若为偶函数,则的值为()A. B. C. D.8.计算:A. B. C. D.9.如图,已知边长为的正三角形内接于圆,为边中点,为边中点,则为()A. B. C. D.10.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.倍 B.2倍 C.倍 D.倍二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分图象如图所示,则f()=________.12.在△ABC中,若a2=b2+bc+c2,则A=________.13.已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100=_______14.已知,,且,若恒成立,则实数的取值范围是____.15.数列是等比数列,,,则的值是________.16.函数的图象在点处的切线方程是,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列中,.(Ⅰ)求的通项公式;(Ⅱ)求数列的前项和.18.某高校自主招生一次面试成绩的茎叶图和频率分布直方图均收到了不同程度的损坏,其可见部分信息如下,据此解答下列问题:(1)求参加此次高校自主招生面试的总人数、面试成绩的中位数及分数在内的人数;(2)若从面试成绩在内的学生中任选三人进行随机复查,求恰好有二人分数在内的概率.19.某地区有小学21所,中学14所,现采用分层抽样的方法从这些学校中抽取5所学校,对学生进行视力检查.(1)求应从小学、中学中分别抽取的学校数目;(2)若从抽取的5所学校中抽取2所学校作进一步数据分析:①列出所有可能抽取的结果;②求抽取的2所学校至少有一所中学的概率.20.在中,角所对的边分别为.(1)若为边的中点,求证:;(2)若,求面积的最大值.21.如图,某人在离地面高度为的地方,测得电视塔底的俯角为,塔顶的仰角为,求电视塔的高.(精确到)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

根据题意,由向量平行的坐标表示公式可得,解可得a的值,即可得答案.【题目详解】根据题意,向量,,若,则有,解可得或1;故选C.【题目点拨】本题考查向量平行的坐标表示方法,熟记平行的坐标表示公式得到关于a的方程是关键,是基础题2、C【解题分析】

由平面向量中的三点共线问题可得:,由基本定理及线性运算可得:即得解.【题目详解】因为,若,,三点共线则,解得,即即即即故选:【题目点拨】本题考查平面向量基本定理和共线定理,属于基础题.3、C【解题分析】

由频率分布直方图求出这1000名学生中成绩在130分以上的频率,由此能求出这1000名学生中成绩在130分以上的人数.【题目详解】由频率分布直方图得这1000名学生中成绩在130分以上的频率为:,则这1000名学生中成绩在130分以上的人数为人.故选:.【题目点拨】本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.4、C【解题分析】

利用甲、乙两名同学6次考试的成绩统计直接求解.【题目详解】由甲乙两名同学6次考试的成绩统计图知:甲组数据靠上,乙组数据靠下,甲组数据相对集中,乙组数据相对分散分散布,由甲乙两组数据的平均数分别为,标准差分别为得,.故选:.【题目点拨】本题考查命题真假的判断,考查平均数、的定义和性质等基础知识,考查运算求解能力,是基础题.5、D【解题分析】

根据三角形解的个数的判断条件得出各选项中对应的解的个数,于此可得出正确选项.【题目详解】对于A选项,,,此时,无解;对于B选项,,,此时,有两解;对于C选项,,则为最大角,由于,此时,无解;对于D选项,,且,此时,有且只有一解.故选D.【题目点拨】本题考查三角形解的个数的判断,解题时要熟悉三角形个数的判断条件,考查推理能力,属于中等题.6、C【解题分析】

比较与时不等式左边的项,即可得到结果【题目详解】因此不等式左边为,选C.【题目点拨】本题考查数学归纳法,考查基本分析判断能力,属基础题7、B【解题分析】f(x)=sin2x﹣cos2x=2sin(2x﹣)的图象向左平移φ(0<φ<)个单位,得到g(x)=2sin(2x-2φ﹣).为偶函数,故得到,故得到2sin(-2φ﹣)=-2或2,.因为,故得到,k=-1,的值为.故答案为B.8、A【解题分析】

根据正弦余弦的二倍角公式化简求解.【题目详解】,故选A.【题目点拨】本题考查三角函数的恒等变化,关键在于寻找题目与公式的联系.9、B【解题分析】

如图,是直角三角形,是等边三角形,,,则与的夹角也是30°,∴,又,∴.故选B.【题目点拨】本题考查平面向量的数量积,解题时可通过平面几何知识求得向量的模,向量之间的夹角,这可简化运算.10、C【解题分析】

以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可.【题目详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三家性的高变为原来的sin45°=,故直观图中三角形面积是原三角形面积的.故选C.【题目点拨】本题重点考查了斜二侧画法、平面图形的面积的求解方法等知识,属于中档题.解题关键是准确理解斜二侧画法的内涵,与x轴平行的线段长度保持不变,与y轴平行的线段的长度减少为原来的一半.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解题分析】

根据图象看出周期、特殊点的函数值,解出待定系数即可解得.【题目详解】由图可知:解得又因:所以又因:即所以又所以又因:所以即所以所以所以故得解.【题目点拨】本题考查由图象求正切函数的解析式,属于中档题。12、120°【解题分析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cosA===-,又∵A为△ABC的内角,∴A=120°故答案为:120°13、-1【解题分析】

分n为偶数和奇数求得数列的奇数项和偶数项均为等差数列,然后利用分组求和得答案.【题目详解】若n为偶数,则an=f(n)+f(n+1)=n2﹣(n+1)2=﹣(2n+1),偶数项为首项为a2=﹣5,公差为﹣4的等差数列;若n为奇数,则an=f(n)+f(n+1)=﹣n2+(n+1)2=2n+1,奇数项为首项为a1=3,公差为4的等差数列.∴a1+a2+a3+…+a1=(a1+a3+…+a99)+(a2+a4+…+a1)1.故答案为:1.【题目点拨】本题考查数列递推式,考查了等差关系的确定,训练了等差数列前n项和的求法,是中档题.14、(-4,2)【解题分析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值15、【解题分析】

由题得计算得解.【题目详解】由题得,所以.因为等比数列同号,所以.故答案为:【题目点拨】本题主要考查等比数列的性质和等比中项的应用,意在考查学生对这些知识的理解掌握水平.16、【解题分析】由导数的几何意义可知,又,所以.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出的通项公式.

(Ⅱ)由,,能求出数列的前n项和.【题目详解】(Ⅰ)设等差数列的公差为,则解得,∴.(Ⅱ).18、(1);;(2)0.6【解题分析】

(1)从分数落在,的频率为,人数为2,求出总人数的值,从而求出面试成绩的中位数及分数在,内的人数;(2)用列举法列出所有可能结果,确定其中符合要求的事件,即可求出概率.【题目详解】(1)∵分数落在的频率为,人数为2,∴,故,∵分数在的人数为15人,∴分数在的人数为人,又∵分数在的人数为人,∴分数在的人数为人,面试成绩的中位数为分;(2)由(1)知分数在的有5人,分数在内的有3人,记分数在的5人为1,2,3,4,5号,分数在内的3人为1,2,3号,则从这5人中任选3人的基本事件为:123,124,125,134,135,145,234,235,245,345,共10种方式;其中恰有2人的分数在内的基本事件为:124,125,134,135,234,235,共6种方式,所以所求概率为.【题目点拨】本题考查频率分布直方图和茎叶图的综合应用,考查古典概型的概率求法,属于基础题.19、(1)3所、2所;(2)①共10种;②【解题分析】

(1)根据分层抽样的方法,得到分层抽样的比例,即可求解样本中小学与中学抽取的学校数目;(2)①3所小学分别记为;2所中学分别记为,利用列举法,即可求得抽取的2所学校的所有结果;②利用古典概型的概率计算公式,即可求得相应的概率.【题目详解】(1)学校总数为35所,所以分层抽样的比例为,计算各类学校应抽取的数目为:,故从小学、中学中分别抽取的学校数目为3所、2所.(2)①3所小学分别记为;2所中学分别记为应抽取的2所学校的所有结果为:共10种.②设“抽取的2所学校至少有一所中学”作为事件.其结果共有7种,所以概率为.【题目点拨】本题主要考查了分层抽样的应用,以及古典概型及其概率的计算,其中解答中认真审题,合理利用列举法求得基本事件的总数是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1)详见解析;(2)1.【解题分析】

(1)证法一:根据为边的中点,可以得到向量等式,平方,再结合余弦定理,可以证明出等式;证法二:分别在和中,利用余弦定理求出和的表达式,利用,可以证明出等式;(2)解法一:解法一:记面积为.由题意并结合(1)所证结论得:,利用已知,再结合基本不等式,最后求可求出面积的最大值;解法二:利用余弦定理把表示出来,结合重要不等式,再利用三角形面积公式可得,令设,利用辅助角公式,可以求出的最大值,即可求出面积的最大值.【题目详解】(1)证法一:由题意得①由余弦定理得②将②代入①式并化简得,故;证法二:在中,由余弦定理得,在中,由余弦定理得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论