版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省永春三中2024届高一数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,A,B,C的对边分别为a,b,c,,则的形状一定是()A.直角三角形 B.等边三角形 C.等腰三角形 D.等腰直角三角形2.在空间四边形中,,,,分别是,的中点,,则异面直线与所成角的大小为()A. B. C. D.3.已知在中,为线段上一点,且,若,则()A. B. C. D.4.已知基本单位向量,,则的值为()A.1 B.5 C.7 D.255.如果数据的平均数为,方差为,则的平均数和方差分别为()A. B. C. D.6.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16 B.14 C.12 D.107.在等比数列中,成等差数列,则公比等于()A.1
或
2 B.−1
或
−2 C.1
或
−2 D.−1
或
28.设函数,则是()A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数9.如图,在平面直角坐标系xOy中,角α0≤α≤π的始边为x轴的非负半轴,终边与单位圆的交点为A,将OA绕坐标原点逆时针旋转π2至OB,过点B作x轴的垂线,垂足为Q.记线段BQ的长为y,则函数A. B.C. D.10.在正方体中,、分别是棱和的中点,为上底面的中心,则直线与所成的角为()A.30° B.45° C.60° D.90°二、填空题:本大题共6小题,每小题5分,共30分。11.如图,圆锥型容器内盛有水,水深,水面直径放入一个铁球后,水恰好把铁球淹没,则该铁球的体积为________12.在中,已知,则下列四个不等式中,正确的不等式的序号为____________①②③④13.设,,为三条不同的直线,,为两个不同的平面,下列命题中正确的是______.(1)若,,,则;(2)若,,,则;(3)若,,,,则;(4)若,,,则.14.已知,,若,则______15.已知函数,若函数恰有个零点,则实数的取值范围为__________.16.已知,,则______,______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)任意向轴上这一区间内投掷一个点,则该点落在区间内的概率是多少?(2)已知向量,,若,分别表示一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足的概率.18.使用支付宝和微信支付已经成为广大消费者最主要的消费支付方式,某超市通过统计发现一周内超市每天的净利润(万元)与每天使用支付宝和微信支付的人数(千人)具有线性相关关系,并得到最近一周的7组数据如下表,并依此作为决策依据.(1)作出散点图,并求出回归方程(,精确到);(2)超市为了刺激周一消费,拟在周一开展使用支付宝和微信支付随机抽奖活动,总奖金7万元.根据市场调查,抽奖活动能使使用支付宝和微信支付消费人数增加7千人,试决策超市是否有必要开展抽奖活动?(3)超市管理层决定:从周一到周日,若第二天的净利润比前一天增长超过两成,则对全体员工进行奖励,在(Ⅱ)的决策下,求全体员工连续两天获得奖励的概率.参考数据:,,,.参考公式:,,.19.已知A、B两地的距离是100km,按交通法规定,A、B两地之间的公路车速x应限制在60~120km/h,假设汽油的价格是7元/L,汽车的耗油率为,司机每小时的工资是70元(设汽车为匀速行驶),那么最经济的车速是多少?如果不考虑其他费用,这次行车的总费用是多少?20.如图,在三棱柱中,侧棱垂直于底面,,,分别是,的中点.(1)求证:平面平面;(2)求证:平面.21.已知圆,为坐标原点,动点在圆外,过点作圆的切线,设切点为.(1)若点运动到处,求此时切线的方程;(2)求满足的点的轨迹方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】
利用平方化倍角公式和边化角公式化简得到,结合三角形内角和定理化简得到,即可确定的形状.【题目详解】化简得即即是直角三角形故选A【题目点拨】本题考查了平方化倍角公式和正弦定理的边化角公式,在化简时,将边化为角,使边角混杂变统一,还有三角形内角和定理的运用,这一点往往容易忽略.2、D【解题分析】
平移两条异面直线到相交,根据余弦定理求解.【题目详解】如图所示:设的中点为,连接,所以,则是所成的角或其补角,又根据余弦定理得:,所以,异面直线与所成角的为,故选D.【题目点拨】本题考查异面直线所成的角和余弦定理.注意异面直线所成的角的取值范围是.3、C【解题分析】
首先,由已知条件可知,再有,这样可用表示出.【题目详解】∵,∴,,∴,∴.故选C.【题目点拨】本题考查平面向量基本定理,解题时用向量加减法表示出,然后用基底表示即可.4、B【解题分析】
计算出向量的坐标,再利用向量的求模公式计算出的值.【题目详解】由题意可得,因此,,故选B.【题目点拨】本题考查向量模的计算,解题的关键就是求出向量的坐标,并利用坐标求出向量的模,考查运算求解能力,属于基础题.5、D【解题分析】
根据平均数和方差的公式,可推导出,,,的平均数和方差.【题目详解】因为,所以,所以的平均数为;因为,所以,故选:D.【题目点拨】本题考查平均数与方差的公式计算,考查对概念的理解与应用,考查基本运算求解能力.6、A【解题分析】设,直线的方程为,联立方程,得,∴,同理直线与抛物线的交点满足,由抛物线定义可知,当且仅当(或)时,取等号.点睛:对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为,则,则,所以.7、C【解题分析】
设出基本量,利用等比数列的通项公式,再利用等差数列的中项关系,即可列出相应方程求解【题目详解】等比数列中,设首项为,公比为,成等差数列,,即,或答案选C【题目点拨】本题考查等差数列和等比数列求基本量的问题,属于基础题8、D【解题分析】函数,化简可得f(x)=–cos2x,∴f(x)是偶函数.最小正周期T==π,∴f(x)最小正周期为π的偶函数.故选D.9、B【解题分析】BQ=|y点睛:有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.10、A【解题分析】
先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【题目详解】解:先画出图形,将平移到,为直线与所成的角,设正方体的边长为,,,,,,故选:.【题目点拨】本题主要考查了异面直线及其所成的角,以及余弦定理的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
通过将图形转化为平面图形,然后利用放球前后体积等量关系求得球的体积.【题目详解】作出相关图形,显然,因此,因此放球前,球O与边相切于点M,故,则,所以,,所以放球后,而,而,解得.【题目点拨】本题主要考查圆锥体积与球体积的相关计算,建立体积等量关系是解决本题的关键,意在考查学生的划归能力,计算能力和分析能力.12、②③【解题分析】
根据,分当和两种情况分类讨论,每一类中利用正、余弦函数的单调性判断,特别注意,当时,.【题目详解】当时,在上是增函数,因为,所以,因为在上是减函数,且,所以,当时,且,因为在上是减函数,所以,而,所以.故答案为:②③【题目点拨】本题主要考查了正弦函数与余弦函数的单调性在三角形中的应用,还考查了运算求解的能力,属于中档题.13、(1)【解题分析】
利用线线平行的传递性、线面垂直的判定定理判定.【题目详解】(1),,,则,正确(2)若,,,则,错误(3)若,则不成立,错误(4)若,,,则,错误【题目点拨】本题主要考查线面垂直的判定定理判定,考查了空间想象能力,属于中档题.14、【解题分析】
根据向量垂直的坐标表示列出等式,求出,再利用二倍角公式、平方关系即可求出.【题目详解】由得,,解得,.【题目点拨】本题主要考查了向量垂直的坐标表示以及二倍角公式、平方关系的应用.15、【解题分析】
首先根据题意转化为函数与有个交点,再画出与的图象,根据图象即可得到的取值范围.【题目详解】有题知:函数恰有个零点,等价于函数与有个交点.当函数与相切时,即:,,,解得或(舍去).所以根据图象可知:.故答案为:【题目点拨】本题主要考查函数的零点问题,同时考查了学生的转化能力,体现了数形结合的思想,属于中档题.16、【解题分析】
由的值,可求出的值,再判断角的范围,可判断出,进而将平方,可求出答案.【题目详解】由题意,,因为,所以,即;又因为,所以,即,而,由于,可知,所以,则,即.故答案为:;.【题目点拨】本题考查同角三角函数基本关系的应用,考查二倍角公式的应用,考查学生的计算求解能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)几何概型的计算公式求解即可;(2)求出该骰子先后抛掷两次的基本事件总数,根据数量积公式得出满足包含的基本事件个数,由古典概型概率公式求解即可.【题目详解】解:(1)由题意可知,任意向这一区间内掷一点,该点落在内哪个位置是等可能的.令,则由几何概型的计算公式可知:.(2)将一枚质地均匀的骰子先后抛掷两次,共有个基本事件.由,得满足包含的基本事件为,,,,,共6种情形,故.【题目点拨】本题主要考查了利用几何概型概率公式以及古典概型概率公式计算概率,属于中档题.18、(1);(2)见解析;(3)【解题分析】
(1)通过表格描点即可,先计算和,然后通过公式计算出线性回归方程;(2)先计算活动开展后使用支付宝和微信支付的人数为(千人),代入(1)问得到结果;(3)先判断周一到周日全体员工只有周二、周三、周四、周日获得奖励,从而确定基本事件,再找出连续两天获得奖励的基本事件,故可计算出全体员工连续两天获得奖励的概率.【题目详解】(1)散点图如图所示,关于的回归方程为(2)活动开展后使用支付宝和微信支付的人数为(千人)由(1)得,当时,此时超市的净利润约为,故超市有必要开展抽奖活动(3)由于,,,,,,故从周一到周日全体员工只有周二、周三、周四、周日获得奖励从周一到周日中连续两天,基本事件为(周一、周二),(周二、周三),(周三、周四),(周四、周五),(周五、周六),(周六、周日),共6个基本事件连续两天获得奖励的基本事件为(周二、周三),(周三、周四),共2个基本事件故全体员工连续两天获得奖励的概率为【题目点拨】本题主要考查线性回归方程,古典概率的计算,意在考查学生的阅读理解能力和分析能力,难度不大.19、80,280【解题分析】
将总费用表示出来,再利用均值不等式得到答案.【题目详解】设总费用为则当时等号成立,满足条件故最经济的车速是,总费用为280【题目点拨】本题考查了函数表达式,均值不等式,意在考查学生解决问题的能力.20、(1)证明见解析(2)证明见解析【解题分析】
(1)根据线面垂直的判断定理得到平面;再由面面垂直的判定定理,即可得出结论成立;(2)取的中点,连接,,根据线面平行的判定定理,即可得出结论成立.【题目详解】(1)在三棱柱中,底面,所以.又因为,所以平面;又平面,所以平面平面;(2)取的中点,连接,.因为,,分别是,,的中点,所以,且,.因为,且,所以,且,所以四边形为平行四边形,所以,又因为平面,平面,所以平面.【题目点拨】本题主要考查证明面面垂直,以及证明线面平行,熟记线面垂直、面面垂直的判定定理,以及线面平行的判定定理即可,属于常考题型.21、(1)或;(2).【解题分析】
解:把圆C的方程化为标准方程为(x+1)2+(y-2)2=4,∴圆心为C(-1,2),半径
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租房合同中装饰权(3篇)
- 2025非住宅小区房屋买卖合同协议书范本
- 2025“合同委托履行协议”填写说明
- 2025版权授权合同模板
- DB12-T 1260-2023 城市轨道交通全自动运行线路技术规范
- 生产线瓶颈工作站改善方法
- 《小荷才露尖尖角》课文解析与教学应用
- 预防接种人员上岗培训考试题及答案
- 牛蛙流通人员工作
- 2025紫水晶买卖合同
- 大队委竞选PPT模板
- 2023新能源集控中心机房设计方案
- 2023年1关于成立X市浙江商会的申请报告五篇范文
- 干一行,爱一行辩论正反方40个问题及回答
- 消防知识培训九小场所
- 《PowerPoint动态效果的设置》教学设计
- GB/T 17911-2018耐火纤维制品试验方法
- 中山大学附属第六医院进修生管理规定
- 了不起的狐狸爸爸-全文打印
- 如何提高教学质量课件
- DB33-T1214-2020《建筑装饰装修工程施工质量验收检查用表标准》
评论
0/150
提交评论