




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省禄丰县广通中学2024届高一数学第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的偶函数,且在上递增,那么一定有()A. B.C. D.2.如图所示,在中,,点在边上,点在线段上,若,则()A. B. C. D.3.如果,并且,那么下列不等式中不一定成立的是()A. B. C. D.4.在数列中,已知,,则该数列前2019项的和()A.2019 B.2020 C.4038 D.40405.函数的部分图像如图所示,则A.B.C.D.6.从3位男运动员和4位女运动员中选派3人参加记者招待会,至少有1位男运动员和1位女运动员的选法有()种A. B. C. D.7.已知全集则()A. B. C. D.8.经过,两点的直线方程为()A. B. C. D.9.已知且为常数,圆,过圆内一点的直线与圆相交于两点,当弦最短时,直线的方程为,则的值为()A.2 B.3 C.4 D.510.在中,已知角的对边分别为,若,,,,且,则的最小角的正切值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设常数,函数,若的反函数的图像经过点,则_______.12.不等式的解集为_____________________。13.如图所示,隔河可以看到对岸两目标,但不能到达,现在岸边取相距的两点,测得(在同一平面内),则两目标间的距离为_________.14.已知向量,,若,则实数__________.15._______________。16.走时精确的钟表,中午时,分针与时针重合于表面上的位置,则当下一次分针与时针重合时,时针转过的弧度数的绝对值等于_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.向量函数.(1)求的最小正周期及单调增区间;(2)求在区间上的最大值和最小值及取最值时的值.18.记公差不为零的等差数列{an}的前n项和为Sn,已知=2,是与的等比中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{}的前n项和Tn.19.设递增等差数列{an}的前n项和为Sn,已知a3=1,a4是a3和a7的等比中项,(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn.20.在等差数列中,,,等比数列中,,.(1)求数列,的通项公式;(2)若,求数列的前n项和.21.等差数列中,.(1)求数列的通项公式;(2)设,求数列的前n项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
根据题意,结合,可知,再利用偶函数的性质即可得出结论.【题目详解】是定义在上的偶函数,,在上递增,,即,故选:D.【题目点拨】本题考查函数奇偶性与单调性的简单应用,判断出是解题关键.2、B【解题分析】
本题首先可根据点在边上设,然后将化简为,再然后根据点在线段上解得,最后通过计算即可得出结果.【题目详解】因为点在边上,所以可设,所以,因为点在线段上,所以三点共线,所以,解得,所以,,故选B.【题目点拨】本题考查向量共线的相关性质以及向量的运算,若向量与向量共线,则,考查计算能力,是中档题.3、D【解题分析】
不等式两边乘(或除以)同一个负数,不等号的方向改变,可判定A的真假;a>b,-1>-2,根据同向不等式可以相加,可判定B的真假;根据a-b>0则b-a<0,进行判定C的真假;a的符号不确定,从而选项D不一定成立,从而得到结论.【题目详解】∵a,b∈R,并且a>b,∴−a<−b,故A一定正确;a>b,−1>−2,根据同向不等式可以相加得,a−1>b−2,故B一定正确;a−b>0则b−a<0,所以a−b>b−a,故C一定正确;不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,而a的符号不确定,故D不一定正确.故选D.【题目点拨】本题主要考查利用不等式的性质判断不等关系,属于基础题.4、A【解题分析】
根据条件判断出为等差数列,利用等差数列的性质得到和之间的关系,得到答案.【题目详解】为等差数列【题目点拨】本题考查等差中项,等差数列的基本性质,属于简单题.5、A【解题分析】试题分析:由题图知,,最小正周期,所以,所以.因为图象过点,所以,所以,所以,令,得,所以,故选A.【考点】三角函数的图像与性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最高点、最低点确定A,h的值,由函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值.6、C【解题分析】
利用分类原理,选出的3人中,有1男2女,有2男1女,两种情况相加得到选法总数.【题目详解】(1)3人中有1男2女,即;(2)3人中有2男1女,即;所以选法总数为,故选C.【题目点拨】分类加法原理和分步乘法原理进行计算时,要注意分类的标准,不出现重复或遗漏情况,本题若是按先选1个男的,再选1个女的,最后从剩下的5人中选1人,则会出现重复现象.7、B【解题分析】
先求M的补集,再与N求交集.【题目详解】∵全集U={0,1,2,3,4},M={0,1,2},∴∁UM={3,4}.∵N={2,3},∴(∁UM)∩N={3}.故选:B.【题目点拨】本题考查了交、并、补集的混合运算,是基础题.8、C【解题分析】
根据题目条件,选择两点式来求直线方程.【题目详解】由两点式直线方程可得:化简得:故选:C【题目点拨】本题主要考查了直线方程的求法,还考查了运算求解的能力,属于基础题.9、B【解题分析】
由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x﹣y=0垂直,再由斜率的关系列式求解.【题目详解】圆C:化简为圆心坐标为,半径为.如图,由题意可得,当弦最短时,过圆心与点(1,2)的直线与直线垂直.则,即a=1.故选:B.【题目点拨】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.10、D【解题分析】
根据大角对大边判断最小角为,利用正弦定理得到,代入余弦定理计算得到,最后得到.【题目详解】根据大角对大边判断最小角为根据正弦定理知:根据余弦定理:化简得:故答案选D【题目点拨】本题考查了正弦定理,余弦定理,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】
反函数图象过(2,1),等价于原函数的图象过(1,2),代点即可求得.【题目详解】依题意知:f(x)=lg(x+a)的图象过(1,2),∴lg(1+a)=2,解得a=1.故答案为:1【题目点拨】本题考查了反函数,熟记其性质是关键,属基础题.12、或【解题分析】
利用一元二次函数的图象或转化为一元一次不等式组解一元二次不等式.【题目详解】由,或,所以或,不等式的解集为或.【题目点拨】本题考查解一元二次不等式,考查计算能力,属于基本题.13、【解题分析】
在中,在中,分别由正弦定理求出,,在中,由余弦定理可得解.【题目详解】由图可得,在中,由正弦定理可得,在中,由正弦定理可得,在中,由余弦定理可得:.故答案为:【题目点拨】此题考查利用正余弦定理求解三角形,根据已知边角关系建立等式求解,此题求AB的长度可在多个三角形中计算,恰当地选择可以减少计算量.14、【解题分析】
根据平面向量时,列方程求出的值.【题目详解】解:向量,,若,则,即,解得.故答案为:.【题目点拨】本题考查了平面向量的坐标运算应用问题,属于基础题.15、【解题分析】
本题首先可根据同角三角函数关系式化简得出,然后根据两角差的正弦公式化简得出,最后根据二倍角公式以及三角函数诱导公式即可得出结果。【题目详解】,故答案为【题目点拨】本题考查根据三角函数相关公式进行化简求值,考查到的公式有、、以及,考查化归与转化思想,是中档题。16、.【解题分析】
设时针转过的角的弧度数为,可知分针转过的角为,于此得出,由此可计算出的值,从而可得出时针转过的弧度数的绝对值的值.【题目详解】设时针转过的角的弧度数的绝对值为,由分针的角速度是时针角速度的倍,知分针转过的角的弧度数的绝对值为,由题意可知,,解得,因此,时针转过的弧度数的绝对值等于,故答案为.【题目点拨】本题考查弧度制的应用,主要是要弄清楚时针与分针旋转的角之间的等量关系,考查分析问题和计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2),最大值为;,最小值为0【解题分析】
(1)用已知的向量表示出,再进行化简整理,可得;(2)由正弦函数的值域可得。【题目详解】(1)由题得,,化简整理得,因此的最小正周期为,由得,则单调增区间为.(2)若,则,当,即时,取最大值,当,即时,取最小值0.综上,当时,取最大值,当时,取最小值0.【题目点拨】本题考查向量的运算和函数的周期,单调区间以及最值,知识点考查全面,难度不大。18、(Ⅰ)an=2n(Ⅱ)【解题分析】
(Ⅰ)由a4是a2与a8的等比中项,可以求出公差,这样就可以求出求数列{an}的通项公式;(Ⅱ)先求出等差数列{an}的前n项和为Sn,用裂项相消法求出求数列{}的前n项和Tn.【题目详解】解:(Ⅰ)由已知,,即(2+3d)2=(2+d)(2+7d),解得:d=2(d≠0),∴an=2+2(n-1)=2n;(Ⅱ)由(Ⅰ)得,,∴,∴=.【题目点拨】本题考查了等差数列的通项公式、前n项和公式.重点考查了裂项相消法求数列前n项和.19、(1)an=2n﹣1;(2).【解题分析】
(1)用首项和公差表示出已知关系,求出,可得通项公式;(2)由等差数列前项和公式得结论.【题目详解】(1)在递增等差数列{an}中,设公差为d>0,∵,∴,解得.∴an=﹣3+(n﹣1)×2=2n﹣1.(2)由(1)知,.【题目点拨】本题考查等差数列的通项公式和前项和公式,解题方法是基本量法.20、(1),(2)【解题分析】
(1)根据等差数列的通项公式求出首项,公差和等比数列的通项公式求出首项,公比即可.
(2)由用错位相减法求和.【题目详解】(1)在等差数列中,设首项为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 催乳师师资考试题及答案
- 产后大出血考试题及答案
- 体育新质生产力高级别研讨会
- 民族风之美食课件
- 乡镇粮食生产的新质生产力路径
- 《统计学-SPSS和Excel实现》(第9版)课件 第12章 非参数检验
- 河南农业新质生产力发展实践
- 新质生产力分类框架解析
- 民族民间文学课件
- 农业新质生产力深度解读
- 圆周率祖冲之课件
- 2024至2030年中国超声波加工机床行业深度调研及发展预测报告
- 月饼订购合同模板
- 粮库环保节能技术改造
- 2024至2030年中国钾长石土壤调理剂行业市场深度分析及投资前景展望报告
- 2024事业单位工勤技能考试题库(含答案)
- DL∕T 1935-2018 架空导线载流量试验方法
- 异地就医备案的个人承诺书
- 小学数学解题研究(小学教育专业)全套教学课件
- 个体诊所备案信息表
- 招标代理服务服务方案
评论
0/150
提交评论