2024届西藏自治区拉萨市八校数学高一第二学期期末综合测试试题含解析_第1页
2024届西藏自治区拉萨市八校数学高一第二学期期末综合测试试题含解析_第2页
2024届西藏自治区拉萨市八校数学高一第二学期期末综合测试试题含解析_第3页
2024届西藏自治区拉萨市八校数学高一第二学期期末综合测试试题含解析_第4页
2024届西藏自治区拉萨市八校数学高一第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届西藏自治区拉萨市八校数学高一第二学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在,,,是边上的两个动点,且,则的取值范围为()A. B. C. D.2.若实数a>b,则下列结论成立的是()A.a2>b2 B. C.ln2a>ln2b D.ax2>bx23.已知正方体中,、分别为,的中点,则异面直线和所成角的余弦值为()A. B. C. D.4.已知某数列的前项和(为非零实数),则此数列为()A.等比数列 B.从第二项起成等比数列C.当时为等比数列 D.从第二项起的等比数列或等差数列5.设,则比多了()项A. B. C. D.6.已知直线经过两点,则的斜率为()A. B. C. D.7.以两点A(-3,-1)和B(5,5)为直径端点的圆的标准方程是()A.(x-1)2+(y-2)2=10 B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=5 D.(x-1)2+(y-2)2=258.若一元二次不等式对一切实数都成立,则的取值范围是()A. B. C. D.9.在中,,,则的最大值为A. B. C. D.10.下图是某圆拱形桥一孔圆拱的示意图,这个圆的圆拱跨度米,拱高米,建造时每隔8米需要用一根支柱支撑,则支柱的高度大约是()A.9.7米 B.9.1米 C.8.7米 D.8.1米二、填空题:本大题共6小题,每小题5分,共30分。11.设,,,,,为坐标原点,若、、三点共线,则的最小值是_______.12.如图,在中,,是边上一点,,则.13.在△ABC中,点M,N满足,若,则x=________,y=________.14.在锐角中,角的对边分别为.若,则角的大小为为____.15.在等比数列中,已知,则=________________.16.函数的递增区间是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.18.已知函数.(1)解关于的不等式;(2)若关于的不等式的解集为,求实数的值.19.已知数列中,..(1)写出、、;(2)猜想的表达式,并用数学归纳法证明.20.某质检机构检测某产品的质量是否合格,在甲、乙两厂匀速运行的自动包装传送带上每隔10分钟抽一包产品,称其质量(单位:克),分别记录抽查数据,获得质量数据茎叶图(如图).(1)该质检机构采用了哪种抽样方法抽取的产品?根据样本数据,求甲、乙两厂产品质量的平均数和中位数;(2)若从甲厂6件样品中随机抽取两件.①列举出所有可能的抽取结果;②记它们的质量分别是克,克,求的概率.21.已知数列满足.(1)若,证明:数列是等比数列,求的通项公式;(2)求的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由题意,可以点为原点,分别以为轴建立平面直角坐标系,如图所示,则点的坐标分别为,直线的方程为,不妨设点的坐标分别为,,不妨设,由,所以,整理得,则,即,所以当时,有最小值,当时,有最大值.故选A.点睛:此题主要考查了向量数量积的坐标运算,以及直线方程和两点间距离的计算等方面的知识与技能,还有坐标法的运用等,属于中高档题,也是常考考点.根据题意,把运动(即的位置在变)中不变的因素()找出来,通过坐标法建立合理的直角坐标系,把点的坐标表示出来,再通过向量的坐标运算,列出式子,讨论其最值,从而问题可得解.2、C【解题分析】

特值法排除A,B,D,单调性判断C【题目详解】由题意,可知:对于A:当a、b都是负数时,很明显a2<b2,故选项A不正确;对于B:当a为正数,b为负数时,则有,故选项B不正确;对于C:∵a>b,∴2a>2b>0,∴ln2a>ln2b,故选项C正确;对于D:当x=0时,结果不成立,故选项D不正确;故选:C.【点评】本题主要考查不等式的性质应用,特殊值技巧的应用,指数函数、对数函数值大小的比较.本题属中档题.3、A【解题分析】

连接,则,所以为所求的角.【题目详解】连结,,因为、分别为,的中点,所以,则为所求的角,设正方体棱长为1,则,,,三角形AD1B为直角三角形,,选择A【题目点拨】本题主要考查了异面直线所成的夹角;求异面直线的夹角,通常把其中一条直线平移到和另外一条直线相交即得异面直线所成的角.属于中等题.4、D【解题分析】

设数列的前项和为,运用数列的递推式:当时,,当时,,结合等差数列和等比数列的定义和通项公式,即可得到所求结论.【题目详解】设数列的前项和为,对任意的,(为非零实数).当时,;当时,.若,则,此时,该数列是从第二项起的等差数列;若且,不满足,当时,,此时,该数列是从第二项起的等比数列.综上所述,此数列为从第二项起的等比数列或等差数列.故选:D.【题目点拨】本题考查数列的递推式的运用,等差数列和等比数列的定义和通项公式,考查分类讨论思想和运算能力,属于中档题.5、C【解题分析】

可知中共有项,然后将中的项数减去中的项数即可得出答案.【题目详解】,则中共有项,所以,比多了的项数为.故选:C.【题目点拨】本题考查数学归纳法的应用,解题的关键就是计算出等式中的项数,考查分析问题和解决问题的能力,属于中等题.6、A【解题分析】

直接代入两点的斜率公式,计算即可得出答案。【题目详解】故选A【题目点拨】本题考查两点的斜率公式,属于基础题。7、D【解题分析】分析:由条件求出圆心坐标和半径的值,从而得出结论.详解:圆心坐标为(1,2),半径r==5,故所求圆的标准方程为(x-1)2+(y-2)2=25.故选D.点睛:本题主要考查求圆的标准方程的方法,求出圆心坐标和半径的值,是解题的关键,属于基础题.8、A【解题分析】

该不等式为一元二次不等式,根据一元二次函数的图象与性质可得,的图象是开口向下且与x轴没有交点,从而可得关于参数的不等式组,解之可得结果.【题目详解】不等式为一元二次不等式,故,根据一元二次函数的图象与性质可得,的图象是开口向下且与x轴没有交点,则,解不等式组,得.故本题正确答案为A.【题目点拨】本题考查一元二次不等式恒成立问题,考查一元二次函数的图象与性质,注意数形结合的运用,属基础题.9、A【解题分析】

利用正弦定理得出的外接圆直径,并利用正弦定理化边为角,利用三角形内角和关系以及两角差正弦公式、配角公式化简,最后利用正弦函数性质可得出答案.【题目详解】中,,,则,,其中由于,所以,所以最大值为.故选A.【题目点拨】本题考查正弦定理以及两角差正弦公式、配角公式,考查基本分析计算能力,属于中等题.10、A【解题分析】

以为原点、以为轴,以为轴建立平面直角坐标系,设出圆心坐标与半径,可得圆拱所在圆的方程,将代入圆的方程,可求出支柱的高度【题目详解】由图以为原点、以为轴,以为轴建立平面直角坐标系,设圆心坐标为,,,则圆拱所在圆的方程为,,解得,,圆的方程为,将代入圆的方程,得.故选:A【题目点拨】本题考查了圆的标准方程在生活中的应用,需熟记圆的标准方程的形式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据三点共线求得的的关系式,利用基本不等式求得所求表达式的最小值.【题目详解】依题意,由于三点共线,所以,化简得,故,当且仅当,即时,取得最小值【题目点拨】本小题主要考查三点共线的向量表示,考查利用基本不等式求最小值,属于基础题.12、【解题分析】

由图及题意得

=

=(

)(

)=

+

=

=

.13、【解题分析】特殊化,不妨设,利用坐标法,以A为原点,AB为轴,为轴,建立直角坐标系,,,则,.考点:本题考点为平面向量有关知识与计算,利用向量相等解题.14、【解题分析】由,两边同除以得,由余弦定理可得是锐角,,故答案为.15、【解题分析】16、;【解题分析】

先利用辅助角公式对函数化简,由可求解.【题目详解】函数,由,可得,所以函数的单调增区间为.故答案为:【题目点拨】本题考查了辅助角公式、正弦函数的图像与性质,需熟记公式与性质,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)an=3n–4,(3)Sn=n3–8n,最小值为–1.【解题分析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(3)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an}的公差为d,由题意得3a1+3d=–3.由a1=–7得d=3.所以{an}的通项公式为an=3n–4.(3)由(1)得Sn=n3–8n=(n–4)3–1.所以当n=4时,Sn取得最小值,最小值为–1.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.18、(1)①当时,不等式的解集为;②当时,由,则不等式的解集为;③当时,由,则不等式的解集为;(2)【解题分析】

(1)不等式,可化为,分三种情况讨论,分别利用一元二次不等式的解法求解即可;(2)不等可化为,根据1和4是方程的两根,利用韦达定理列方程求解即可.【题目详解】(1)不等式,可化为:.①当时,不等式的解集为;②当时,由,则不等式的解集为;③当时,由,则不等式的解集为;(2)不等可化为:.由不等式的解集为可知,1和4是方程的两根.故有,解得.由时方程为的根为1或4,则实数的值为1.【题目点拨】本题主要考查一元二次不等式的解法以及分类讨论思想的应用,属于中档题..分类讨论思想的常见类型

,⑴问题中的变量或含有需讨论的参数的,要进行分类讨论的;

⑵问题中的条件是分类给出的;

⑶解题过程不能统一叙述,必须分类讨论的;

⑷涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.19、(1),,;(2)猜想,证明见解析.【解题分析】

(1)利用递推公式可计算出、、的值;(2)根据数列的前四项可猜想出,然后利用数学归纳法即可证明出猜想成立.【题目详解】(1),,则,,;(2)猜想,下面利用数学归纳法证明.假设当时成立,即,那么当时,,这说明当时,猜想也成立.由归纳原理可知,.【题目点拨】本题考查利用数列递推公式写出数列中的项,同时也考查了利用数学归纳法证明数列通项公式,考查计算能力与推理能力,属于中等题.20、(1)系统抽样;乙厂产品质量的平均数,乙厂质量的中位数是113;甲厂质量的平均数,甲厂质量的中位数是113(2)①详见解析②【解题分析】

(1)根据抽样方式即可确定抽样方法;根据茎叶图中的数据,即可分别求得两组的平均数与中位数;(2)由甲厂的样品数据,即可由列举法得所有可能;根据列举的数据,即可得满足的情况,即可求得复合要求的概率.【题目详解】(1)由题意该质检机构抽取产品采用的抽样方法为系统抽样,甲厂质量的平均数,甲厂质量的中位数是113,乙厂产品质量的平均数,乙厂质量的中位数是113.(2)①从甲厂6件样品中随机抽取两件,分别为:,,,共15个.②设“”为事件,则事件共有5个结果:.所以的概率.【题目点拨】本题考查了茎叶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论