福建省罗源第二中学、连江二中2024届数学高一下期末综合测试试题含解析_第1页
福建省罗源第二中学、连江二中2024届数学高一下期末综合测试试题含解析_第2页
福建省罗源第二中学、连江二中2024届数学高一下期末综合测试试题含解析_第3页
福建省罗源第二中学、连江二中2024届数学高一下期末综合测试试题含解析_第4页
福建省罗源第二中学、连江二中2024届数学高一下期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省罗源第二中学、连江二中2024届数学高一下期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线是圆在处的切线,点是圆上的动点,则点到直线的距离的最小值等于()A.1 B. C. D.22.己知,,若轴上方的点满足对任意,恒有成立,则点纵坐标的最小值为()A. B. C.1 D.23.下列函数中,最小值为2的函数是()A. B.C. D.4.已知,则下列不等式中成立的是()A. B. C. D.5.甲箱子里装有个白球和个红球,乙箱子里装有个白球和个红球.从这两个箱子里分别摸出一个球,设摸出的白球的个数为,摸出的红球的个数为,则()A.,且 B.,且C.,且 D.,且6.用数学归纳法证明“”,从“到”左端需增乘的代数式为()A. B. C. D.7.如图是正方体的展开图,则在这个正方体中:①与平行;②与是异面直线;③与成60°角;④与垂直.以上四个命题中,正确命题的序号是A.①②③ B.②④ C.③④ D.②③④8.函数,的值域是()A. B. C. D.9.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位10.不等式的解集为,则实数的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在四面体ABCD中,平面ABC,,,若四面体ABCD的外接球的表面积为,则四面体ABCD的体积为_______.12.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.13.函数的部分图象如图所示,则函数的解析式为______.14.已知数列是首项为,公差为的等差数列,若数列是等比数列,则___________.15.过点且与直线l:垂直的直线方程为______.(请用一般式表示)16.在梯形中,,,设,,则__________(用向量表示).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥,平面ABCD,四边形ABCD是直角梯形,,,,E为PB中点.(1)求证:平面PCD;(2)求证:.18.已知数列是递增的等比数列,且(Ⅰ)求数列的通项公式;(Ⅱ)设为数列的前n项和,,求数列的前n项和.19.如图,已知等腰梯形中,是的中点,,将沿着翻折成,使平面平面.(Ⅰ)求证:;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点P,使得平面,若存在,求出的值;若不存在,说明理由.20.设集合,,求.21.已知圆关于直线对称,半径为,且圆心在第一象限.(Ⅰ)求圆的方程;(Ⅱ)若直线与圆相交于不同两点、,且,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

先求得切线方程,然后用点到直线距离减去半径可得所求的最小值.【题目详解】圆在点处的切线为,即,点是圆上的动点,圆心到直线的距离,∴点到直线的距离的最小值等于.故选D.【题目点拨】圆中的最值问题,往往转化为圆心到几何对象的距离的最值问题.此类问题是基础题.2、D【解题分析】

由题意首先利用平面向量的坐标运算法则确定纵坐标的解析式,然后结合二次函数的性质确定点P纵坐标的最小值即可.【题目详解】设,则,,故,恒成立,即恒成立,据此可得:,故,当且仅当时等号成立.据此可得的最小值为,则的最小值为.即点纵坐标的最小值为2.故选D.【题目点拨】本题主要考查平面向量的坐标运算,二次函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.3、C【解题分析】

利用基本不等式及函数的单调性即可判断.【题目详解】解:对于.时,,故错误.对于.,可得,,当且仅当,即时取等号,故最小值不可能为1,故错误.对于,可得,,当且仅当时取等号,最小值为1.对于.,函数在上单调递增,在上单调递减,,故不对;故选:.【题目点拨】本题考查基本不等式,难点在于应用基本不等式时对“一正二定三等”条件的理解与灵活应用,属于中档题.4、D【解题分析】

由,,计算可判断;由,,计算可判断;由,可判断;作差可判断.【题目详解】解:,当,时,可得,故错误;当,时,,故错误;当,,故错误;,即,故正确.故选:.【题目点拨】本题考查不等式的性质,考查特殊值的运用,以及运算能力,属于基础题.5、D【解题分析】可取,;,,,,,故选D.6、B【解题分析】

分别求出时左端的表达式,和时左端的表达式,比较可得“从到”左端需增乘的代数式.【题目详解】由题意知,当时,有,当时,等式的左边为,所以左边要增乘的代数式为.故选:.【题目点拨】本题主要考查的是归纳推理,需要结合数学归纳法进行求解,熟知数学归纳法的步骤,最关键的是从到,考查学生仔细观察的能力,是中档题.7、C【解题分析】

将正方体的展开图还原为正方体后,即可得到所求正确结论.【题目详解】将正方体的展开图还原为正方体ABCD﹣EFMN后,可得AF,CN异面;BM,AN平行;连接AN,NF,可得∠FAN为AF,BM所成角,且为60°;BN⊥DE,DE⊥AB可得DE⊥平面ABN,可得DE⊥BN,可得③④正确,故选C.【题目点拨】本题考查展开图与空间几何体的关系,考查空间线线的位置关系的判断,属于基础题.8、A【解题分析】

由的范围求出的范围,结合余弦函数的性质即可求出函数的值域.【题目详解】∵,∴,∴当,即时,函数取最大值1,当即时,函数取最小值,即函数的值域为,故选A.【题目点拨】本题主要考查三角函数在给定区间内求函数的值域问题,通过自变量的范围求出整体的范围是解题的关键,属基础题.9、D【解题分析】

根据三角函数图象的平移变换可直接得到图象变换的过程.【题目详解】因为,所以向右平移个单位即可得到的图象.故选:D.【题目点拨】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.10、C【解题分析】

不等式的解集为,为方程的两根,则根据根与系数关系可得,.故选C.考点:一元二次不等式;根与系数关系.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

易得四面体为长方体的一角,再根据长方体体对角线等于外接球直径,再利用对角线公式求解即可.【题目详解】因为四面体中,平面,且,.故四面体是以为一个顶点的长方体一角.设则因为四面体的外接球的表面积为,设其半径为,故.解得.故四面体的体积.故答案为:【题目点拨】本题主要考查了长方体一角的四面体的外接球有关问题,需要注意长方体体对角线等于外接球直径.属于中档题.12、【解题分析】

点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【题目详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【题目点拨】本题考查直线的方程,属于基础题.13、【解题分析】

根据三角函数图象依次求得的值.【题目详解】由图象可知,,所以,故,将点代入上式得,因为,所以.故.故答案为:【题目点拨】本小题主要考查根据三角函数的图象求三角函数的解析式,属于基础题.14、或【解题分析】

由等比数列的定义得出,可得出,利用两角和与差的余弦公式化简可求得的值.【题目详解】由于数列是首项为,公差为的等差数列,则,,又数列是等比数列,则,即,即,即,整理得,即,可得,,因此,或.故答案为:或.【题目点拨】本题考查利用等差数列和等比数列的定义求参数,同时也涉及了两角和与差的余弦公式的化简计算,考查计算能力,属于中等题.15、【解题分析】

与直线垂直的直线方程可设为,再将点的坐标代入运算即可得解.【题目详解】解:与直线l:垂直的直线方程可设为,又该直线过点,则,则,即点且与直线l:垂直的直线方程为,故答案为:.【题目点拨】本题考查了与已知直线垂直的直线方程的求法,属基础题.16、【解题分析】

根据向量减法运算得结果.【题目详解】利用向量的三角形法则,可得,,又,,则,.故答案为.【题目点拨】本题考查向量表示,考查基本化解能力三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见详解;(2)证明见详解【解题分析】

(1)取的中点,证出,再利用线面平行的判定定理即可证出.(2)利用线面垂直的判定定理可证出平面,再根据线面垂直的定义即可证出.【题目详解】如图,取的中点,连接,E为PB中点,,且,又,,,,为平行四边形,即,又平面PCD,平面PCD,所以平面PCD.(2)由平面ABCD,所以,又因为,,所以,,平面,又平面,.【题目点拨】本题考查了线面平行的判定定理、线面垂直的判定定理,要证线面平行,需先证线线平行;要证异面直线垂直,可先证线面垂直,此题属于基础题.18、(Ⅰ)(Ⅱ)【解题分析】试题分析:(1)设等比数列的公比为q,,根据已知由等比数列的性质可得,联立解方程再由数列为递增数列可得则通项公式可得(2)根据等比数列的求和公式,有所以,裂项求和即可试题解析:(1)设等比数列的公比为q,所以有联立两式可得或者又因为数列为递增数列,所以q>1,所以数列的通项公式为(2)根据等比数列的求和公式,有所以所以考点:等比数列的通项公式和性质,数列求和19、(Ⅰ)详见解析;(Ⅱ)二面角的余弦值为;(Ⅲ)存在点P,使得平面,且.【解题分析】

试题分析:(I)根据直线与平面垂直的判定定理,需证明垂直平面内的两条相交直线.由题意易得四边形是菱形,所以,从而,即,进而证得平面.(Ⅱ)由(I)可知,、、两两互相垂直,故可以为轴,为轴,为轴建立空间直角坐标系,利用空间向量即可求得二面角的余弦值.(Ⅲ)根据直线与平面平行的判定定理,只要能找到一点P使得PM平行平面内的一条直线即可.由于,故可取线段中点P,中点Q,连结.则,且.由此即可得四边形是平行四边形,从而问题得证.试题解析:(I)由题意可知四边形是平行四边形,所以,故.又因为,M为AE的中点所以,即又因为,所以四边形是平行四边形.所以故.因为平面平面,平面平面,平面所以平面.因为平面,所以.因为,、平面,所以平面.(Ⅱ)以为轴,为轴,为轴建立空间直角坐标系,则,,,.平面的法向量为.设平面的法向量为,因为,,,令得,.所以,因为二面角为锐角,所以二面角的余弦值为.(Ⅲ)存在点P,使得平面.法一:取线段中点P,中点Q,连结.则,且.又因为四边形是平行四边形,所以.因为为的中点,则.所以四边形是平行四边形,则.又因为平面,所以平面.所以在线段上存在点,使得平面,.法二:设在线段上存在点,使得平面,设,(),,因为.所以.因为平面,所以,所以,解得,又因为平面,所以在线段上存在点,使得平面,.考点:1、空间直线与平面的位置关系;2、二面角.20、【解题分析】

首先求出集合,,再根据集合的运算求出即可.【题目详解】因为的解为(舍去),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论