版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省平顶山市汝州市实验中学2024届数学高一下期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数(其中)的图象向右平移个单位,若所得图象与原图象重合,则不可能等于()A.0 B. C. D.2.等差数列{an}中,若S1=1A.2019 B.1 C.1009 D.10103.右边茎叶图记录了甲、乙两组各十名学生在高考前体检中的体重(单位:).记甲组数据的众数与中位数分别为,乙组数据的众数与中位数分别为,则()A. B.C. D.4.设m>1,在约束条件y≥xA.1,1+2C.(1,3) D.(3,+∞)5.同时具有性质:“①最小正周期是;②图象关于直线对称;③在上是单调递增函数”的一个函数可以是()A. B.C. D.6.若,,则的值是()A. B. C. D.7.设集合,,则()A. B. C. D.8.已知,其中,若函数在区间内有零点,则实数的取值可能是()A. B. C. D.9.若平面α∥平面β,直线平面α,直线n⊂平面β,则直线与直线n的位置关系是()A.平行 B.异面C.相交 D.平行或异面10.已知直线的倾斜角为,在轴上的截距为2,则此直线方程为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小正周期是________.12.设向量是两个不共线的向量,若与共线,则_______.13.执行右边的程序框图,若输入的是,则输出的值是.14.函数的最大值是__________.15.在中,若,,,则________.16.在数列中,,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知圆:,点.(1)求经过点且与圆相切的直线的方程;(2)过点的直线与圆相交于、两点,为线段的中点,求线段长度的取值范围.18.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD="40"m,则电视塔的高度为多少?19.设为数列的前项和,.(1)求证:数列是等比数列;(2)求证:.20.已知,函数,,(1)证明:是奇函数;(2)如果方程只有一个实数解,求a的值.21.定义:对于任意,满足条件且(是与无关的常数)的无穷数列称为数列.(1)若,证明:数列是数列;(2)设数列的通项为,且数列是数列,求常数的取值范围;(3)设数列,若数列是数列,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由题意,所以,因此,从而,可知不可能等于.2、D【解题分析】
由等差数列{an}中,S1=1,S【题目详解】∵等差数列{an}中,S∴S即15=5+10d,解得d=1,∴S故选:D.【题目点拨】本题考查等差数列基本量的求法,考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.3、D【解题分析】甲组数据的众数为x1=64,乙组数据的众数为x2=66,则x1<x2;甲组数据的中位数为y1==65,乙组数据的中位数为y2==66.5,则y1<y2.4、A【解题分析】试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A.考点:简单线性规划的应用.【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.5、D【解题分析】
利用正弦函数、余弦函数的图象和性质,逐一检验,可得结论.【题目详解】A,对于y=cos(),它的周期为4π,故不满足条件.B,对于y=sin(2x),在区间上,2x∈[,],故该函数在区间上不是单调递增函数,故不满足条件.C,对于y=cos(2x),当x时,函数y,不是最值,故不满足②它的图象关于直线x对称,故不满足条件.D,对于y=sin(2x),它的周期为π,当x时,函数y=1,是函数的最大值,满足它的图象关于直线x对称;且在区间上,2x∈[,],故该函数在区间上是单调递增函数,满足条件.故选:D.【题目点拨】本题主要考查了正弦函数、余弦函数的图象和性质,属于中档题.6、B【解题分析】,,,故选B.7、D【解题分析】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.8、D【解题分析】
求出函数,令,,根据不等式求解,即可得到可能的取值.【题目详解】由题:,其中,令,,若函数在区间内有零点,则有解,解得:当当当结合四个选项可以分析,实数的取值可能是.故选:D【题目点拨】此题考查根据函数零点求参数的取值范围,需要熟练掌握三角函数的图像性质,求出函数零点再讨论其所在区间列不等式求解.9、D【解题分析】
由面面平行的定义,可得两直线无公共点,可得所求结论.【题目详解】平面α∥平面β,可得两平面α,β无公共点,即有直线与直线也无公共点,可得它们异面或平行,故选:D.【题目点拨】本题考查空间线线的位置关系,考查面面平行的定义,属于基础题.10、D【解题分析】
由题意可得直线的斜率和截距,由斜截式可得答案.【题目详解】解:∵直线的倾斜角为45°,∴直线的斜率为k=tan45°=1,由斜截式可得方程为:y=x+2,故选:D.【题目点拨】本题考查直线的斜截式方程,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据周期公式即可求解.【题目详解】函数的最小正周期故答案为:【题目点拨】本题主要考查了正弦型函数的周期,属于基础题.12、【解题分析】试题分析:∵向量,是两个不共线的向量,不妨以,为基底,则,又∵共线,.考点:平面向量与关系向量13、24【解题分析】
试题分析:根据框图的循环结构,依次;;;.跳出循环输出.考点:算法程序框图.14、【解题分析】分析:利用两角和正弦公式简化为y=,从而得到函数的最大值.详解:y=sinx+cosx==.∴函数的最大值是故答案为点睛:本题考查了两角和正弦公式,考查了正弦函数的图象与性质,属于基础题.15、2;【解题分析】
利用余弦定理可构造关于的方程,解方程求得结果.【题目详解】由余弦定理得:解得:或(舍)本题正确结果:【题目点拨】本题考查利用余弦定理解三角形,属于基础题.16、16【解题分析】
依次代入即可求得结果.【题目详解】令,则;令,则;令,则;令,则本题正确结果:【题目点拨】本题考查根据数列的递推公式求解数列中的项,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解题分析】试题分析:(1)设直线方程点斜式,再根据圆心到直线距离等于半径求斜率;最后验证斜率不存在情况是否满足题意(2)先求点的轨迹:为圆,再根据点到圆上点距离关系确定最值试题解析:(1)当过点直线的斜率不存在时,其方程为,满足条件.当切线的斜率存在时,设:,即,圆心到切线的距离等于半径3,,解得.切线方程为,即故所求直线的方程为或.(2)由题意可得,点的轨迹是以为直径的圆,记为圆.则圆的方程为.从而,所以线段长度的最大值为,最小值为,所以线段长度的取值范围为.18、40m.【解题分析】试题分析:本题是解三角形的实际应用题,根据题意分析出图中的数据,即∠ADB=30°,∠ACB=45°,所以,可以得出在Rt△ABD中,BD=AB,在Rt△ABC中,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,代入数据,运算即可得出结果.试题解析:根据题意得,在Rt△ABD中,∠ADB=30°,∴BD=AB,在Rt△ABC中,∠ACB=45°,∴BC=AB.在△BCD中,由余弦定理,得BD2=BC2+CD2-2BC·CDcos∠BCD,∴3AB2=AB2+CD2-2AB·CDcos120°整理得AB2-20AB-800=0,解得,AB=40或AB=-20(舍).即电视塔的高度为40m考点:解三角形.19、(1)见解析;(2)见解析.【解题分析】
(1)令,由求出的值,再令,由得,将两式相减并整理得,计算出为非零常数可证明出数列为等比数列;(2)由(1)得出,可得出,利用放缩法得出,利用等比数列求和公式分别求出数列和的前项和,从而可证明出所证不等式成立.【题目详解】(1)当时,,解得;当时,由得,上述两式相减得,整理得.则,且.所以,数列是首项为,公比为的等比数列;(2)由(1)可知,则.因为,所以.又因为,所以.综上,.【题目点拨】本题考查利用前项和求数列通项,考查等比数列的定义以及放缩法证明数列不等式,解题时要根据数列递推公式或通项公式的结构选择合适的方法进行求解,考查分析问题和解决问题的能力,属于中等题.20、(1)证明见解析(1)1【解题分析】
(1)运用函数的奇偶性的定义即可得证(1)由题意可得有且只有两个相等的实根,可得判别式为0,解方程可得所求值.【题目详解】(1)证明:由函数,,可得定义域为,且,可得为奇函数;(1)方程只有一个实数解,即为,即△,解得舍去),则的值为1.【题目点拨】本题考查函数的奇偶性的判断和二次方程有解的条件,考查方程思想和定义法,属于基础题.21、(1)证明见解析;(2);(3).【解题分析】
(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年生物工程师职业资格《生物科学与工程技术》备考题库及答案解析
- 2025年环境监测师《环境污染监测技术与方法专业能力》备考题库及答案解析
- 商铺租赁合同噪音协商2025年
- 人力资源招聘合同协议2025
- 全职员工2025年合同变更协议
- 清洁工兼职合同协议2025年
- 旅游行程安排协议2025年内容
- 客服兼职工作合同协议2025年
- 地址管廊工程合同范本
- 外商股权质押合同范本
- 数学2025-2026学年人教版(2024)数学八年级上册期中必考题检测卷
- 2025成考英语词汇必背3500词
- 2025中医技能考试题及答案
- 质量控制流程梳理与执行标准
- 2025中科芯集成电路有限公司校园招聘笔试历年参考题库附带答案详解(3卷合一)
- 全运会简介教学课件
- 产品预购合同(标准版)
- 铁路工作安全培训课件
- 水泥厂设备巡检规程
- 2025年小学心理健康学科新课程标准考试测试卷
- 城乡街道环卫清洁服务方案投标文件(技术标)
评论
0/150
提交评论