




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省名校2024届数学高一第二学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列的公差d>0,则下列四个命题:①数列是递增数列;②数列是递增数列;③数列是递增数列;④数列是递增数列;其中正确命题的个数为()A.1 B.2 C.3 D.42.设的内角,,的对边分别为,,.若,,,且,则()A. B. C. D.3.设△的内角所对的边为,,,,则()A. B.或 C. D.或4.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是()A.2张恰有一张是移动卡 B.2张至多有一张是移动卡C.2张都不是移动卡 D.2张至少有一张是移动卡5.已知数列中,,,则等于()A. B. C. D.6.已知、是球的球面上的两点,,点为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为()A. B. C. D.7.利用随机模拟方法可估计无理数π的数值,为此设计右图所示的程序框图,其中rand()表示产生区间(0,1)上的随机数,P是s与n的比值,执行此程序框图,输出结果P的值趋近于()A.π B.π4 C.π28.将函数的图象向左平移个单位得到函数的图象,则的值为()A. B. C. D.9.如图,在正方体中,已知,分别为棱,的中点,则异面直线与所成的角等于()A.90° B.60°C.45° D.30°10.等比数列的前n项和为,且,,成等差数列.若,则()A.15 B.7 C.8 D.16二、填空题:本大题共6小题,每小题5分,共30分。11.若,则函数的值域为________.12.已知线段上有个确定的点(包括端点与).现对这些点进行往返标数(从…进行标数,遇到同方向点不够数时就“调头”往回数).如图:在点上标,称为点,然后从点开始数到第二个数,标上,称为点,再从点开始数到第三个数,标上,称为点(标上数的点称为点),……,这样一直继续下去,直到,,,…,都被标记到点上,则点上的所有标记的数中,最小的是_______.13.由于坚持经济改革,我国国民经济继续保持了较稳定的增长.某厂2019年的产值是100万元,计划每年产值都比上一年增加,从2019年到2022年的总产值为______万元(精确到万元).14.等差数列前项和为,已知,,则_____.15.在中,,,,点在线段上,若,则的面积是_____.16.已知x,y=R+,且满足x2y6,若xy的最大值与最小值分别为M和m,M+m=_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系xOy中,已知点,圆.(1)求过点P且与圆C相切于原点的圆的标准方程;(2)过点P的直线l与圆C依次相交于A,B两点.①若,求l的方程;②当面积最大时,求直线l的方程.18.已知以点(a∈R,且a≠0)为圆心的圆过坐标原点O,且与x轴交于点A,与y轴交于点B.(1)求△OAB的面积;(2)设直线l:y=﹣2x+4与圆C交于点P、Q,若|OP|=|OQ|,求圆心C到直线l的距离.19.已知函数(1)求函数的最大值以及取得最大值时的集合;(2)若函数的递减区间.20.如图,在四棱锥中,底面,底面为矩形,为的中点,且,,.(1)求证:平面;(2)若点为线段上一点,且,求四棱锥的体积.21.数列中,,,.(1)证明:数列是等比数列.(2)若,,且,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
对于各个选项中的数列,计算第n+1项与第n项的差,看此差的符号,再根据递增数列的定义得出结论.【题目详解】设等差数列,d>0∵对于①,n+1﹣n=d>0,∴数列是递增数列成立,是真命题.对于②,数列,得,,所以不一定是正实数,即数列不一定是递增数列,是假命题.对于③,数列,得,,不一定是正实数,故是假命题.对于④,数列,故数列是递增数列成立,是真命题.故选:B.【题目点拨】本题考查用定义判断数列的单调性,考查学生的计算能力,正确运用递增数列的定义是关键,属于基础题.2、B【解题分析】由余弦定理得:,所以,即,解得:或,因为,所以,故选B.考点:余弦定理.3、B【解题分析】试题分析:因为,,,由正弦定理,因为是三角形的内角,且,所以,故选B.考点:正弦定理4、B【解题分析】
概率的事件可以认为是概率为的对立事件.【题目详解】事件“2张全是移动卡”的概率是,它的对立事件的概率是,事件为“2张不全是移动卡”,也即为“2张至多有一张是移动卡”.故选B.【题目点拨】本题考查对立事件,解题关键是掌握对立事件的概率性质:即对立事件的概率和为1.5、A【解题分析】
变形为,利用累加法和裂项求和计算得到答案.【题目详解】故选:A【题目点拨】本题考查了累加法和裂项求和,意在考查学生对于数列方法的灵活应用.6、A【解题分析】
当点位于垂直于面的直径端点时,三棱锥的体积最大,利用三棱锥体积的最大值为,求出半径,即可求出球的表面积.【题目详解】如图所示,当点位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,.因此,球的表面积为.故选:A.【题目点拨】本题考查球的半径与表面积的计算,确定点的位置是关键,考查分析问题和解决问题的能力,属于中等题.7、B【解题分析】
根据程序框图可知由几何概型计算出x,y任取(0,1)上的数时落在x2【题目详解】解:根据程序框图可知P为频率,它趋近于在边长为1的正方形中随机取一点落在扇形内的的概率π×故选:B【题目点拨】本题考查的知识点是程序框图,根据已知中的程序框图分析出程序的功能,并将问题转化为几何概型问题是解答本题的关键,属于基础题.8、A【解题分析】,向左平移个单位得到函数=,故9、B【解题分析】
连接,可证是异面直线与所成的角或其补角,求出此角即可.【题目详解】连接,因为,分别为棱,的中点,所以,又正方体中,所以是异面直线与所成的角或其补角,是等边三角形,=60°.所以异面直线与所成的角为60°.故选:B.【题目点拨】本题考查异面直线所成的角,解题时需根据定义作出异面直线所成的角,同时给出证明,然后在三角形中计算.10、B【解题分析】
通过,,成等差数列,计算出,再计算【题目详解】等比数列的前n项和为,且,,成等差数列即故答案选B【题目点拨】本题考查了等比数列通项公式,等差中项,前N项和,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
令,结合可得,本题转化为求二次函数在的值域,求解即可.【题目详解】,.令,,则,由二次函数的性质可知,当时,;当时,.故所求值域为.【题目点拨】本题考查了函数的值域,利用换元法是解决本题的一个方法.12、【解题分析】
将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,则,令,即可得.【题目详解】依照题意知,标有2的是1+2,标有3的是1+2+3,……,标有2019的是1+2+3+……+2019,将将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,,令,,解得,故点上的所有标记的数中,最小的是3.【题目点拨】本题主要考查利用合情推理,分析解决问题的能力.意在考查学生的逻辑推理能力,13、464【解题分析】
根据等比数列求和公式求解【题目详解】由题意得从2019年到2022年各年产值构成以100为首项,1.1为公比的等比数列,其和为【题目点拨】本题考查等比数列应用以及等比数列求和公式,考查基本分析求解能力,属基础题14、1【解题分析】
首先根据、即可求出和,从而求出。【题目详解】,①,②①②得,,即,∴,即,∴,故答案为:1.【题目点拨】本题主要考查了解方程,以及等差数列的性质和前项和。其中等差数列的性质:若则比较常考,需理解掌握。15、【解题分析】
过作于,设,运用勾股定理和三角形的面积公式,计算可得所求值.【题目详解】过作于,设,,,,又,可得,即有,可得的面积为.故答案为.【题目点拨】本题考查解三角形,考查勾股定理的运用,以及三角形的面积公式,考查化简运算能力,属于基础题.16、【解题分析】
设,则,可得,然后利用基本不等式得到关于的一元二次方程解方程可得的最大值和最小值,进而得到结论.【题目详解】∵x,y=R+,设,则,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值与最小值分别为M和m,∴M,m,∴M+m.【题目点拨】本题考查了基本不等式的应用和一元二次不等式的解法,考查了转化思想和运算推理能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)①;②或.【解题分析】
(1)设所求圆的圆心为,而所求圆的圆心与、共线,故圆心在直线上,又圆同时经过点与点,求出圆的圆心和半径,即可得答案;(2)①由题意可得为圆的直径,求出的坐标,可得直线的方程;②当直线的斜率不存在时,直线方程为,求出,的坐标,得到的面积;当直线的斜率存在时,设直线方程为.利用基本不等式、点到直线的距离公式求得,则直线方程可求.【题目详解】(1)由,得,圆的圆心坐标,设所求圆的圆心为.而所求圆的圆心与、共线,故圆心在直线上,又圆同时经过点与点,圆心又在直线上,则有:,解得:,即圆心的坐标为,又,即半径,故所求圆的方程为;(2)①由,得为圆的直径,则过点,的方程为,联立,解得,直线的斜率,则直线的方程为,即;②当直线的斜率不存在时,直线方程为,此时,,,;当直线的斜率存在时,设直线方程为.再设直线被圆所截弦长为,则圆心到直线的距离,则.当且仅当,即时等号成立.此时弦长为10,圆心到直线的距离为5,由,解得.直线方程为.当面积最大时,所求直线的方程为:或.【题目点拨】本题考查圆的方程的求法、直线与圆的位置关系应用,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力.18、(1)4(2)【解题分析】
(1)求得圆的半径,设出圆的标准方程,由此求得两点坐标,进而求得三角形的面积.(2)根据,判断出,由直线的斜率求得直线的斜率,以此列方程求得,根据直线和圆相交,圆心到直线的距离小于半径,确定,同时得到圆心到直线的距离.【题目详解】(1)根据题意,以点(a∈R,且a≠0)为圆心的圆过坐标原点O,设圆C的半径为r,则r2=a2,圆C的方程为(x﹣a)2+(y)2=a2,令x=0可得:y=0或,则B(0,),令y=0可得:x=0或2a,则A(2a,0),△OAB的面积S|2a|×||=4;(2)根据题意,直线l:y=﹣2x+4与圆C交于点P、Q,则|CP|=|CQ|,又由|OP|=|OQ|,则直线OC与PQ垂直,又由直线l即PQ的方程为y=﹣2x+4,则KOC,解可得a=±2,当a=2时,圆心C的坐标为(2,1),圆心到直线l的距离d,r,r>d,此时直线l与圆相交,符合题意;当a=2时,圆心C的坐标为(﹣2,﹣1),圆心到直线l的距离d,r,r<d,此时直线l与圆相离,不符合题意;故圆心C到直线l的距离d.【题目点拨】本小题主要考查圆的标准方程,考查直线和圆的位置关系,考查两条直线的位置关系,考查运算求解能力,属于中档题.19、(1)当时,的最大值为(2)【解题分析】
(1)化简根据正弦函数的最值即可解决,(2)根据(1)的化简结果,根据正弦函数的单调性即可解决。【题目详解】解:(1)因为,所以所以的最大值为,此时(2)由(1)得得即减区间为【题目点拨】本题主要考查了正弦函数的最值与单调性,属于基础题。20、(1)见解析(2)6【解题分析】
(1)连接交于点,得出点为的中点,利用中位线的性质得出,再利用直线与平面平行的判定定理可得出平面;(2)过作交于,由平面,得出平面,可而出,结合,可证明出平面,可得出,并计算出,利用平行线的性质求出的长,再利用锥体的体积公式可计算出四棱锥的体积.【题目详解】(1)连接交于,连接.四边形为矩形,∴为中点.又为中点,∴.又平面,平面,∴平面;(2)过作交于.∵平面,∴平面.又平面,∴.∵,,,平面,∴平面.连接,则,又是矩形,易证,而,,得,由得,∴.又矩形的面积为8,∴.【题目点拨】本题考查直线与平面平行的证明,以及锥体体积的计算,直线与平面平行的证明,常用以下三种方法进行证明:(1)中位线平行;(2)平行四边形对边平行;(3)构造面面平行来证明线面平行.一般遇到中点找中点,根据已知条件类型选择合适的方法证明.21、(1)见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 邯郸市中医院肝门部胆管癌根治术关键技术考核
- 晋城市人民医院小针刀技术操作考核
- 中国联碱项目投资计划书
- 唐山市中医院注射美容术前设计能力考核
- 通辽市人民医院溶栓质量管理指标考核
- 大庆市人民医院医学人文建设考核
- 唐山市中医院造口周围皮肤护理考核
- 中国数字告示(数字标牌)项目商业计划书
- 2025年中国无铝泡打粉项目创业计划书
- 中国芒硝项目投资计划书
- 整式(第一课时)课件冀教版七年级数学上册
- 厂房办公室装饰施工方案
- 浙江省天域全国名校协作体2026届高三上学期10月联考政治试题(含答案)
- 医养结合政策课件
- 实验室安全知识培训讲义课件
- GMP知识培训资料课件
- 2025年度国家电投校园招聘模拟试卷及答案详解(历年真题)
- 钢厂吊装安全培训课件
- 海南实验室设计施工方案
- 环卫机械安全培训内容课件
- 财务报表数据核对与审计清单
评论
0/150
提交评论