




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西玉林市福绵区高一数学第二学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.矩形ABCD中,,,则实数()A.-16 B.-6 C.4 D.2.函数的图象如图所示,为了得到的图象,则只要将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度3.如图,四棱锥的底面为平行四边形,,则三棱锥与三棱锥的体积比为()A. B. C. D.4.计算的值为().A. B. C. D.5.已知等比数列中,,该数列的公比为A.2 B.-2 C. D.36.在中,已知,,则为()A.等腰直角三角形 B.等边三角形C.锐角非等边三角形 D.钝角三角形7.已知函数,且不等式的解集为,则函数的图象为()A. B.C. D.8.若是异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交9.已知数列的前项和为,令,记数列的前项为,则()A. B. C. D.10.设变量,满足约束条件则目标函数的最小值为()A.4 B.-5 C.-6 D.-8二、填空题:本大题共6小题,每小题5分,共30分。11.我国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天走的路程为__________里.12.一艘海轮从出发,沿北偏东方向航行后到达海岛,然后从出发沿北偏东方向航行后到达海岛,如果下次直接从沿北偏东方向到达,则______.13.______.14.若的面积,则=15.已知为的三个内角A,B,C的对边,向量,.若,且,则B=16.方程在区间上的解为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在锐角中角,,的对边分别是,,,且.(1)求角的大小;(2)若,求面积的最大值.18.已知函数.(1)求函数图象的对称轴方程;(2)若对于任意的,恒成立,求实数的取值范围.19.是亚太区域国家与地区加强多边经济联系、交流与合作的重要组织,其宗旨和目标是“相互依存、共同利益,坚持开放性多边贸易体制和减少区域间贸易壁垒.”2017年会议于11月10日至11日在越南岘港举行.某研究机构为了了解各年龄层对会议的关注程度,随机选取了100名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分别为,,,,).(1)求选取的市民年龄在内的人数;(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在内的概率.20.已知数列的前项和,且,数列满足:对于任意,有.(1)求数列的通项公式;(2)求数列的通项公式,若在数列的两项之间都按照如下规则插入一些数后,构成新数列:和两项之间插入个数,使这个数构成等差数列,求;(3)若不等式成立的自然数恰有个,求正整数的值.21.已知单调递减数列的前项和为,,且,则_____.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
根据题意即可得出,从而得出,进行数量积的坐标运算即可求出实数.【题目详解】据题意知,,,.故选:.【题目点拨】考查向量垂直的充要条件,以及向量数量积的坐标运算,属于容易题.2、D【解题分析】
先根据图象确定A的值,进而根据三角函数结果的点求出求与的值,确定函数的解析式,然后根据诱导公式将函数化为余弦函数,再平移即可得到结果.【题目详解】由题意,函数的部分图象,可得,即,所以,再根据五点法作图,可得,求得,故.函数的图象向左平移个单位,可得的图象,则只要将的图象向右平移个单位长度可得的图象,故选:D.【题目点拨】本题主要考查了三角函数的图象与性质,以及三角函数的图象变换的应用,其中解答中熟记三角函数的图象与性质,以及三角函数的图象变换是解答的关键,着重考查了推理与运算能力,属于基础题.3、C【解题分析】
先由题意,得到,推出,再由推出,由,进而可得出结果.【题目详解】因为底面为平行四边形,所以,所以,因为,所以,所以,所以,因此.故选C【题目点拨】本题主要考查棱锥体积之比,熟记棱锥的体积公式,以及等体积法的应用即可,属于常考题型.4、D【解题分析】
利用诱导公式以及特殊角的三角函数值可求出结果.【题目详解】由诱导公式可得,故选D.【题目点拨】本题考查诱导公式求值,解题时要熟练利用“奇变偶不变,符号看象限”基本原则加以理解,考查计算能力,属于基础题.5、B【解题分析】分析:根据等比数列通项公式求公比.详解:因为,所以选B.点睛:本题考查等比数列通项公式,考查基本求解能力.6、A【解题分析】
已知第一个等式利用正弦定理化简,再利用诱导公式及内角和定理表示,根据两角和与差的正弦函数公式化简,得到A=B,第二个等式左边前两个因式利用积化和差公式变形,右边利用二倍角的余弦函数公式化简,将A+B=C,A﹣B=0代入计算求出cosC的值为0,进而确定出C为直角,即可确定出三角形形状.【题目详解】将已知等式2acosB=c,利用正弦定理化简得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A与B都为△ABC的内角,∴A﹣B=0,即A=B,已知第二个等式变形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,则△ABC为等腰直角三角形.故选A.【题目点拨】此题考查了正弦定理,两角和与差的正弦公式,二倍角的余弦函数公式,熟练掌握正弦定理是解本题的关键.7、B【解题分析】本题考查二次函数图像,二次方程的根,二次不等式的解集三者之间的关系.不等式的解集为,所以方程的两根是则解得所以则故选B8、D【解题分析】
若为异面直线,且直线,则与可能相交,也可能异面,但是与不能平行,若,则,与已知矛盾,选项、、不正确故选.9、B【解题分析】
由数列的前项和求通项,再由数列的周期性及等比数列的前项和求解.【题目详解】因为,当时,得;当,且时,,不满足上式,∴,所以,当时,;当是偶数时,为整数,则,所以;故对于任意正整数,均有:因为,所以.因为为偶数,所以,而,所以.故选:B.【题目点拨】本题考查数列的函数概念与表示、余弦函数的性质、正弦函数的诱导公式以及数列求和,解题的关键是当时,,和的推导,本题属于难题.10、D【解题分析】绘制不等式组所表示的平面区域,结合目标函数的几何意义可知,目标函数在点处取得最小值.本题选择D选项.二、填空题:本大题共6小题,每小题5分,共30分。11、192【解题分析】设每天走的路程里数为由题意知是公比为的等比数列∵∴∴故答案为12、【解题分析】
首先根据余弦定理求出,在根据正弦定理求出,即可求出【题目详解】有题知.所以.在中,,即,解得.所以,故答案为:【题目点拨】本题主要考查正弦定理和余弦定理的实际应用,熟练掌握公式为解题的关键,属于中档题.13、【解题分析】
,,故答案为.考点:三角函数诱导公式、切割化弦思想.14、【解题分析】试题分析:,.考点:三角形的面积公式及余弦定理的变形.点评:由三角形的面积公式,再根据,直接可求出tanC的值,从而得到C.15、【解题分析】
根据得,再利用正弦定理得,化简得出角的大小。再根据三角形内角和即可得B.【题目详解】根据题意,由正弦定理可得则所以答案为。【题目点拨】本题主要考查向量与三角形正余弦定理的综合应用,属于基础题。16、【解题分析】试题分析:化简得:,所以,解得或(舍去),又,所以.【考点】二倍角公式及三角函数求值【名师点睛】已知三角函数值求角,基本思路是通过化简,得到角的某种三角函数值,结合角的范围求解.本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)由正弦定理可得,结合,可求出与;(2)由余弦定理可得,结合基本不等式可得,即可求出,从而可求出的最大值.【题目详解】解:(1)因为,所以,又,所以,又是锐角三角形,则.(2)因为,,,所以,所以,即(当且仅当时取等号),故.【题目点拨】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了利用基本不等式求最值,考查了学生的计算能力,属于中档题.18、(1)(2)【解题分析】
(1)通过三角恒等变形,化简为的形式,方便我们去研究与其相关的任何问题;(2)恒成立,可转化,我们只需要求出最大值从而完成本题.【题目详解】(1)令得,所以的对称轴为(2)当时,,,因为,即恒成立故,解得【题目点拨】在研究三角函数相关的性质(值域、对称中心、对称轴、单调性……)我们都是将其化为(或者余弦、正切相对应)的形式,利用整体思想,我们能比较方便的去研究他们相关性质.19、(1)30人;(2).【解题分析】
(1)由频率分布直方图,先求出年龄在内的频率,进而可求出人数;(2)先由分层抽样,确定应从第3,4组中分别抽取3人,2人,记第3组的3名志愿者分别为,第4组的2名志愿者分别为,再用列举法,分别列举出总的基本事件,以及满足条件的基本事件,基本事件个数比即为所求概率.【题目详解】(1)由题意可知,年龄在内的频率为,故年龄在内的市民人数为.(2)易知,第4组的人数为,故第3,4组共有50名市民,所以用分层抽样的方法在50名志愿者中抽取5名志愿者,每组抽取的人数分别为:第3组;第4组.所以应从第3,4组中分别抽取3人,2人.记第3组的3名志愿者分别为,第4组的2名志愿者分别为,则从5名志愿者中选取2名志愿者的所有情况为,,,,,,,,,,共有10种.其中第4组的2名志愿者至少有一名志愿者被选中的有:,,,,,,,共有7种,所以至少有一人的年龄在内的概率为.【题目点拨】本题主要考查由频率分布直方图求频数,以及古典概型的概率问题,会分析频率分布直方图,熟记古典概型的概率计算公式即可,属于常考题型.20、(1);,;(3).【解题分析】
(1)令求出,然后令,由得出,两式相减可得出数列是等比数列,确定该数列的首项和公比,即可求出数列的通项公式;(2)令可计算出,再令,由可得出,两式相减求出,求出,再检验是否满足的表达式,由此可得出数列的通项公式,求出,由,以及可得出的值;(3)化简可得,分类讨论,当、时,不等式成立,当时,,利用判断数列的单调性,得出该数列的最大项,可知满足不等式,且和不满足该不等式,由此可得出实数的取值范围,进而求出正整数的值.【题目详解】(1)对任意的,.当时,,解得;当时,由得出,两式相减得,化简得,即,所以,数列是以为首项,以为公比的等比数列,因此,;(2)对于任意,有.当时,,;当时,由,可得,上述两式相减得,.适合上式,因此,.由于和两项之间插入个数,使得这个数成等差数列,这个数列的公差为.,且,所以,;(3)由,得.当、,该不等式显然成立;当时,,由,得,设,,当时,,即当时,,即,则.所以,数列的最大项为,又,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内镜室志愿者岗位职责与活动安排
- 交通运输普通工人年终工作总结范文
- 小学葫芦丝与其他乐器的结合教学计划
- 物流行业企业战略管理论文4000字范文
- 基于项目的地理教学心得体会
- 输血管理及输血护理规范
- 历史教学与心理健康教育结合计划
- 2025年白刚玉市场需求分析
- 制造业综合办公室岗位职责
- 中学教师成长与培训计划
- 热力管网施工组织设计方案标书
- 中医十八项护理操作并发症及处理10-38-30
- 机械通气基础知识及基础操作课件
- 打印版医师执业注册健康体检表(新版)
- 《空中领航》全套教学课件
- 人教版五年级下册数学操作题期末专项练习(及解析)
- 中药熏洗法操作评分标准与流程
- 学习解读《执业兽医和乡村兽医管理办法》课件
- 室内装饰不锈钢技术交底
- 1.3.1动量守恒定律课件(共13张PPT)
- 白黑白装饰画欣赏黑白装饰画的特点黑白装饰画的表现形式黑白装饰 bb
评论
0/150
提交评论