自然体系中元素的分布_第1页
自然体系中元素的分布_第2页
自然体系中元素的分布_第3页
自然体系中元素的分布_第4页
自然体系中元素的分布_第5页
已阅读5页,还剩179页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1TheChemicalCompositionoftheSolarSystemandtheEarthTwosuggestionsExpertisecomesfrommakingallpossiblemistakes(NielsBohr)Nothingcanbeobtainedingeochemistrywithoutcarefulanalyticalwork(C.J.Allegre)FurtherreadingsW.M.White,Geochemistry.Aon-linetextbook.S.R.TaylorandS.M.,1995.TheContinentalCrust:ItsCompositionandEvolution.Blackwell,Oxford.W.F.McDonoughandS.Sun,TheCompositionoftheEarth,ChemicalGeology,120:223-253.GeochemicalEarthReferenceModel(GERM)

www.EarthRWhydowestudyelementabundances?FundamentalforanygeochemicalstudiesConfusingtermsAbundance:foralargesystem,e.g.,Cosmos,Sun,Moon,Earth,crust,regionalcrustContent/concentration:forasmallersystem,e.g.,rocks,minerals,naturalwater.Part1TheSolar/CosmicsystemSourcesforstudiesMeteoriteSun’sPhotosphereCosmicraysEarthandmoonVariousmeteoritesizesStonymeteoriteIronmeteoriteAhnighitometeorite南极洲

IvunameteoritefragmentMeteoriteEsquel

Pallasite(石铁陨石)FoundinEsquel,ArgentinaWhereisthebestplacetofindmeteoritesonEarth?Firn

粒雪

Katabatic

下降的ablation[æb‘leiʃən]切除,消除nunatak[’nʌnətæk]冰原岛峰Classificationofmeteoritesaccordingtotextureandchemicalcomposition(White,2001)Achondrite

不含球粒陨石

aubrite:顽火无球粒陨石15Aside:MeteoriteClassificationLifeonMars!RelativeabundanceofmajortypesofmeteoritefallsCharacteristicsofchondritegroupsCarbonaceouschondritesarethemostvolatile-richandthemostprimitive.IvunameteoriteA0.7-kilogramcarbonaceouschondrite(typeCI1,seebelow)whichlandednearIvuna,Tanzania,onDecember16,1938.Itwassubsequentlysplitintoanumberofsamples.

Ivunawasoneoffourmeteorites,includingtheOrgueilmeteorite,inwhichBartholomewNagyandGeorgeClaus1claimedtohavefoundevidenceofprimitiveextraterrestrialfossils.Subsequentanalysisledtothisclaimbeingdiscredited.However,in2001,investigationbyateamfromtheScrippsInstitutionofOceanography,theLeidenObservatoryintheNetherlands,andtheNASAAmesResearchCenter,2showedthepresenceinIvunaoftwosimpleaminoacids,glycineandbeta-alanine,andlinkedIvunawithalikelyorigininthenucleusofacomet.Formoreonthisdiscoveryanditsimplications,seetheentryfortheOrgueilmeteorite.

IvunaisoneofonlynineknownmeteoritesthatareclassifiedastypeCI1carbonaceouschondrites.Thesemeteoritescontain“heavyelements”(i.e.,elementsotherthanhydrogenandhelium)innearlythesameabundancesasintheSun,whichmeansthattheyareessentiallyunalteredsincetheywereformedataboutthesametimeasthesolarsystemitself,some4.6billionyearsago.ThedesignationCI1indicatesthatIvunaunderwentahighdegreeofaqueousalteration(orchemicalchangeduetothepresenceofwater).Thisalterationtookplaceintheparentbodyofthemeteoriteatlowtemperatures,probablyintherangeof20–50°C,andinawater-richenvironment.Bycontrast,ordinarychondriteshaveexperiencedthermalmetamorphismunderdryconditionsinatemperaturerangeof600–900°C.

CI1typemeteoritesareverydark,becauseoftheirhighcarboncontent,containahighproportionofofiron-richclaysorphyllosilicates(层状硅酸盐),andhaveveryfinegrainsize.InIvuna,thereisalsoacompleteabsenceofchondrules,owingtothefactthattheyhaveallbeenalteredtoclaysandironoxides.

WhatdoestheclassificationCI1mean?

CI1chondriteIvuna–upto20wt.%waterCondensation(冷凝)sequenceofagaswithasolarcompositionCondesationsequenceofmineralsperovskite[pə'rɔvzkait]n.钙钛矿corundum[kə'rʌndəm]n.金刚砂,刚玉troilite['trəuilait,'trɔil-]n.陨硫铁Goldschmidt’sclassificationofelementslithophile['liθəufail]n.亲石元素lithophile['liθəufail]n.亲石元素siderophilen.亲铁元素chalcophile['kælkə,fail]adj.亲铜的,亲硫的atmophile:亲气元素Classificationofelements

(McDonoughandSun,1995)refractory[ri‘fræktəri]adj.难熔的atmophile:亲气元素ClassificationofelementsaccordingtovolatilityThereismuchinterestinhighTcomponent,i.e.,theso-calledRefractoryInclusions(RI)orCa-Alinclusions(CAI),becausetheircompositionrepresentsthatofthefirstcondensatesfromahighTgas.Ca-AlinclusionCartonillustratingtheprocessinvolvedinformationofchondritesandtheircomponentsinterstellar[,intə'stelə]adj.星际的ChondriticbodyDifferentiatedbodyTypesofStonyMeteoritesChondrites–HeatedbuthavenotmeltedTendtocontainchondrulesAggregatesofhigh-andlow-temperaturecomponentsAchondrites–HeatingtothepointofmeltingTendtodifferentiateWherematerialsegregatesduetodensitachondrite[ei'kɔndrait]n.不含球粒陨石Abundancesofelementsinsun’sphotospherevstheirabundancesinCIchondrites(White,2001)ComparisonofelementabundancesinsolarphotosphereandCIcarbonaceouschondrites(TaylorandMcLennan,1995)SolarsystemabundancesofelementsrelativetoSi=106CharacteristicofelementabundancesofthesolarsystemHandHeaccountsfor98%inmass.Exponentialdecreaseinabundanceforelementswithatomicnumber<45.Elementswithevenmassshowsignificantlyhigherabundancesthantheneighboringelementswithoddmass.HeexhibitanabnomouslyhighabundancecomparedtotheneighboringLi,BeandB.OandFeshowapeak.Isotopeswithatomicweightbeingfactorof4havehighabundance.4He(Z=2,N=2),16O(Z=8,N=8),

40Ca(Z=20,N=20).Even-oddmasseffect5758596062636465666768697071SequenceofdecreasingelementabundancesinthesolarsystemHHeOCN,NeMg,SiFeS1010to109107106105Neocleo(核)synthesisTheBigBangStellarstructure(恒星结构)

attheonsetofsupernova(超新星)stage(White,2001)TheE-process(Siburning)TheS-process(neutroncapture)Ther-process(Rapidneutroncapture)PrinciplemechanismforformingheavierisotopesThep-process(Protoncapture)ResponsibleforthelightestisotopesofagivenelementTher-processpathPart2TheMoonRepresentativecompositionsoflunarrocks(月岩)anorthosite[æ‘nɔ:θəsait][岩]

斜长岩tholeiite['θəuli:ait]n.[岩]拉斑玄武岩ComparisonofthecompositionoftheMoonandtheEarthHighlightsof

lunar

GeochronologyPart3TheEarthVolumesandmassesoftheEarth’sshellsTheEarth’sInteriorMantle:Peridotite(ultramafic)Upper

to410km(olivine®spinel)LowVelocityLayer

60-220kmTransitionZone

asvelocityincreases~rapidly660spinel®

perovskite(钙钛矿)-typeSiIV

®

SiVILowerMantle

hasmoregradual velocityincreaseFigure1-2.MajorsubdivisionsoftheEarth.Winter(2001)AnIntroductiontoIgneousandMetamorphicPetrology.PrenticeHall.TheEarth’sInteriorCore:Fe-NimetallicalloyOuterCore

isliquidNoS-wavesInnerCore

issolidFigure1-2.MajorsubdivisionsoftheEarth.Winter(2001)AnIntroductiontoIgneousandMetamorphicPetrology.PrenticeHall.Figure1-3.VariationinPandSwavevelocitieswithdepth.CompositionalsubdivisionsoftheEarthareontheleft,rheologicalsubdivisionsontheright.AfterKeareyandVine(1990),GlobalTectonics.©BlackwellScientific.Oxford.

Part3-1ThemantleMethodsofstudiesMantlexenolithsentrainedbyvolcanicrocksMassifperidotite:ExhumedmantleslabMantle-derivedvolcanicrocksExperimentsathighP-TSeismicanddensitypropertiesMantleRockTypesRockNamesPeridotite(橄榄岩):ultramaficrockcomposedofolivine,2pyroxenes(opx-cpx)andAl-phase(i.e.,plagioclase,spinel,garnet,withthespecificphasebeingafunctionofpressure,0-10,10-25,>25Kbrespectively),includes:lherzolite(二辉橄榄岩),harzburgite(方辉橄榄岩),dunite(纯橄岩)

Eclogite(榴辉岩):mafic(i.e.,basaltic)rockcomposedofNa-richclinopyroxeneandgarnetPyroxenite(辉石岩):mafictoultramaficrock,dominantlycomposedofpyroxene,oftencontaininganAl-phase(e.g.,plagioclase,spinel,garnet)

Non-RockNames

PrimitiveMantle/SilicateEarth:modelcompositionforthecrust+mantle.Pyrolite(地幔岩):modelcompositionfortheprimitivemantle,namederivedfrompyroxene-olivine-ite.(Ringwood,1963)Piclogite(苦橄岩):modelcompositionforthemantle,namederivedfrompicritic-eclogite(picrite=olivine-richbasalt).Lherzolite(二辉橄榄岩):AtypeofperidotitewithOlivine+Opx+CpxOlivineClinopyroxeneOrthopyroxeneLherzoliteHarzburgiteWehrliteWebsteriteOrthopyroxeniteClinopyroxeniteOlivineWebsteritePeridotitesPyroxenites90401010DuniteFigure2-2CAfterIUGSMantlerockmineralassemblageSimple:4or5phasesOlivine(Ol)Orthopyroxene(OPX)Clinopyroxene(CPX)Plagioclase(Pl)Spinel(Sp)Garnet(Gt)CompositionofrocksPyroliteharzburgitelherzoliteeclogiteSiO245464450Al2O34.51.22.216FeO8.07.38.210MgO3844418CaO3.60.92.210*Mg#89.491.589.958.8*densityr3.3853.3463.3763.970olivine566265--orthopyx183021--clinopyx102850garnet146650Modalandphysicalpropertyforlithosphericmantleofdifferentages

(AfterO’Reillyetal.,2001)

MantlePhaseDiagramsPhasediagramforaluminous4-phaselherzolite:Plagioclaseshallow(<50km)Spinel50-80kmGarnet80-400kmSi®VIcoord.>400kmAl-phase=Figure10-2

Phasediagramofaluminouslherzolitewithmeltinginterval(gray),sub-solidusreactions,andgeothermalgradient.AfterWyllie,P.J.(1981).Geol.Rundsch.70,128-153.

MantlephasediagramPhaseassemblagesand1atmdensityMeltingofMantleMelt:BasaltResidue:Peridotite1510500.00.20.40.60.8Wt.%Al2O3Wt.%TiO2DuniteHarzburgiteLherzoliteTholeiiticbasaltPartialMeltingResiduumLherzoliteisprobablyfertileunalteredmantleDunite(纯橄岩)andharzburgite(方辉橄榄岩)

arerefractoryresiduumafterbasalthasbeenextractedbypartialmeltingFigure10-1BrownandMussett,A.E.(1993),TheInaccessibleEarth:AnIntegratedViewofItsStructureandComposition.Chapman&Hall/Kluwer.Howdoesthemantlemelt??1)IncreasethetemperatureFigure10-3.Meltingbyraisingthetemperature.

2)LowerthepressureAdiabatic(绝热的)

riseofmantlewithnoconductiveheatlossDecompressionmeltingcouldmeltatleast30%Figure10-4.Meltingby(adiabatic)pressurereduction.Meltingbeginswhentheadiabatcrossesthesolidusandtraversestheshadedmeltinginterval.Dashedlinesrepresentapproximate%melting.

3)Addvolatiles(especiallyH2O)Figure10-4.DryperidotitesoliduscomparedtoseveralexperimentsonH2O-saturatedperidotites.Experimentsonmeltingenrichedvs.depletedmantlesamples:Tholeiite(拉斑玄武岩)easilycreatedby10-30%PMMoresilicasaturatedatlowerPGradestowardalkalicathigherP1.DepletedMantleFigure10-17a.Resultsofpartialmeltingexperimentsondepletedlherzolites.Dashedlinesarecontoursrepresentingpercentpartialmeltproduced.Stronglycurvedlinesarecontoursofthenormativeolivinecontentofthemelt.“Opxout”and“Cpxout”representthedegreeofmeltingatwhichthesephasesarecompletelyconsumedinthemelt.AfterJaquesandGreen(1980).

Contrib.Mineral.Petrol.,73,287-310.

Experimentsonmeltingenrichedvs.depletedmantlesamples:TholeiitesextendtohigherPthanforDMAlkalinebasaltfieldathigherPyetAndlower%PM2.EnrichedMantleFigure10-17b.Resultsofpartialmeltingexperimentsonfertilelherzolites.Dashedlinesarecontoursrepresentingpercentpartialmeltproduced.Stronglycurvedlinesarecontoursofthenormativeolivinecontentofthemelt.“Opxout”and“Cpxout”representthedegreeofmeltingatwhichthesephasesarecompletelyconsumedinthemelt.Theshadedarearepresentstheconditionsrequiredforthegenerationofalkalinebasalticmagmas.AfterJaquesandGreen(1980).

Contrib.Mineral.Petrol.,73,287-310.

MeltingofmantleT,PCaO-Al2O3plotshowingtherangeofmantlecompositionofdifferentages

(O’Reillyetal.,2001)

DEPLETIONLherzolitefromHannuoba,NorthChinaCratonDeepestmantlesamplesfromtransitionzone:

Majorite-BearingXenolithsfromMalaita,OntongJavaOceanicPlateau-9.5GPa(260km)to22GPa(570km).

Collersonetal.,2000,Science,288:1215-1223MantlephasediagramCommonlherzolitexenolithscomefromadepthof50-80km:lithospherePhasediagramforaluminous4-phaselherzolite:Plagioclaseshallow(<50km)Spinel50-80kmGarnet80-400kmSi®VIcoord.>400kmAl-phase=Figure10-2

Phasediagramofaluminouslherzolitewithmeltinginterval(gray),sub-solidusreactions,andgeothermalgradient.AfterWyllie,P.J.(1981).Geol.Rundsch.70,128-153.

StructureoflithosphereNyblade,2001LithosphereevolutionineasternNorthChinacraton

(AfterO’Reillyetal.,2001)

EstimationofPrimitiveMantleCompositionMantlemodelcirca1975Figure10-16a

AfterBasalticVolcanismStudyProject(1981).LunarandPlanetaryInstitute.NewermantlemodelUpperdepletedmantle=MORB+crustsourcesLowerundepleted&enrichedOIBsourceFigure10-16b

AfterBasalticVolcanismStudyProject(1981).LunarandPlanetaryInstitute.PrimitivevsmetasomatismPrimitive:FlatREEMetasomatism:LREEenrichedREEdistributionofperidotiteshowingeffectofmantlemetasomatismContinental

CrustMORBGarnet

harzburgiteSpinel

lherzolitePrimitive

Mantle10210110-1100LaCePrNdSmEuGdTbDyHoErTmYbLuChondritenormalizationCriteriaforestimatingPrimitiveMantleCompositionShouldhaverefractorylithophileelementratiosthataresimilartoCIchondrite.VariationswithMgOinperidotite(橄榄岩)Constantrefractory

elementratiosinperidotites(橄榄岩)Elementalratiosinchondriticmeteorites

(McDonoughandSun,1995)Variationofrefractorylithophileelementratiosinperidotites

(McDonoughandSun,1995)Estimatingrefractory

lithophileelements

inbulksilicateEarth

(McDonoughandSun,1995)EstimatesofSilicateEarth

-MajorelementsEstimatesofSilicateEarth

-TraceelementsPart3-2TheCoreandBulkEarthTheEarth’sInteriorCore:Fe-NimetallicalloyOuterCore

isliquidNoS-wavesInnerCore

issolidFigure1-2.MajorsubdivisionsoftheEarth.Winter(2001)AnIntroductiontoIgneousandMetamorphicPetrology.PrenticeHall.CompositionoftheCorePoorlyconstrainedbeyonditsmajorconstituents(i.e.,anFe-Nialloy).Presenceof5-15%oflightelement(s)(S,O,Si).ThedominantdepositoryofsiderophileelementsintheEarth.LimitsonthecompositionsofthecoreandbulkEarth

(McDonough&Sun,1995)Liquidsilicate-liquidmetalpartitioncoefficientsComparisonofelementdistributionsintheEarthandcarbonaceouschondritesTheEarthismorestronglydepletedinvolatileelementsFigure1-5.Relativeatomicabundancesofthesevenmostcommonelementsthatcomprise97%oftheEarth'smass.AnIntroductiontoIgneousandMetamorphicPetrology,byJohnWinter,PrenticeHall.Part3-3TheOceaniccrustTheEarth’sCrustOceaniccrustThin:10kmRelativelyuniformstratigraphy =ophiolitesuite:

Sedimentspillowbasaltsheeteddikesmoremassivegabbroultramafic(mantle)ContinentalCrustThicker:20-90kmaverage~35kmHighlyvariablecompositionAverage~granodioriteMethodsofstudyOphiolite(蛇绿岩)OceandrillingSeismicstudiesStructureofoceaniccrustPlateTectonics–IgneousGenesis

1.

Mid-oceanRidges2.

IntracontinentalRifts3.IslandArcs4.

ActiveContinental Margins

5.

Back-arcBasins6.

OceanIslandBasalts7.

MiscellaneousIntra- ContinentalActivitykimberlites,carbonatites,anorthosites...CompositionoftheOceanicCrust(TaylorandMcLennan,1995)ImportanceofDeterminingCrustalCompositionBasicconstraintsonevolutionoftheEarth.MostaccessiblepartoftheEarthandthebestknown.Placeforformationofmostoforedeposits.Importantdepositoryforhighlyincompatibleelements(U,K,Cs).Essentialforenvironmentalstudiesandgeochemicalexploration.StudyofthecompositionofthecontinentalcrustcanbetracedbacktoearlieststageofgeochemicalstudiesF.M.Clarke,1889F.M.ClarkeandH.S.Washington,1924V.M.Goldschmidt,1933,whoisregardedasthefatherofmoderngeochemistry.S.R.Taylor,1994D.M.Shaw,1967S.R.TaylorandS.M.McLennan,1985K.H.Wedepohl,1992WhatistheContinentalCrust?ExtendsverticallyfromthesurfacetotheMohorovicicdiscontinuity,ajumpincompressionalwaveVpspeedsfrom~7km/sto~8km/sthatisinterpretedtomarkthecrust-mantleboundary.Stratificationinseismicvelocityandthusrocktypeandchemicalcomposition.Lateralandverticallyheterogeneousandgreatdiversityinrocktype.Structureandcompositionalmodelofthecontinentalcrust

(Wedepohl,1995)MetamorphicFaciesFig.25-2.

Temperature-pressurediagramshowingthegenerallyacceptedlimitsofthevariousfaciesusedinthistext.Boundariesareapproximateandgradational.The“typical”oraveragecontinentalgeothermisfromBrownandMussett(1993).Winter(2001)AnIntroductiontoIgneousandMetamorphicPetrology.PrenticeHall.UppercrustMiddleCrustLowerCrustPart3-4-1TheUpperContinentalCrust:themostaccessiblepartoftheEarthMethodsofStudiesLarge-scaleregionalsampling(e.g.,theCanadianShield)Usingfine-grainedclasticsedimentsExamples:TheCanadianShieldandEasternChina.Themostreliablemethodforuppercrustalcompositionestimation.Theonlymethodformajorelementcompositionstudies.Expensiveandtime-consuming.Notpertainto(适合)thestudyofuppercrustalcompositioninthegeologicalhistory.Large-scaleregionalsamplingXRFX-rayfluorescenceX射线荧光INAAInstrumentalNeutronAtivationAnalysisFine-GrainedClasticSedimentsasNaturalSamplingoftheExposedUpperContinentalCrustShale,mudstone,siltstone,graywackgraywacke['ɡrei,wækə]n.杂砂岩;硬砂岩(等于greywacke),tillite(冰碛岩),andloess(黄土).Simpleandmuchlessexpensive.Theonlywayforstudyinguppercrustalcompositioningeologicalhistory.Unsuitabletoprovidingthemajorelementcomposition.LimitedtoREE,Y,Th,Sc,Co.Geologicalinfluencesonsedimentaryrockcomposition-SolubilityWater-uppercrustpartitioncoefficient(分配系数):

Ky=Naturalwater/UppercrustSeawaterresidencetime

y:timeforreplacementofseawaterelementconcentration.

y=My/Fy

whereMyisthemassofelementyintheoceansandFyistheannualmeanfluxofelementythroughtheoceanreservoir.WeatheringCa,NaandSrarelostK,Rb,CsandBaareretained.Al,Ga,HSFE(Ti,Zr,Hf,Ta,Th)andREE,Y,Scareimmobile.CIA:ChemicalIndexofAlterationCIA=Al2O3/(Al2O3+CaO*+Na2O+K2O)

inmolecularproportionPlagioclaseisthedominantphaseinthecontinentalcrustsubjectedtoweathering.Pleistocene['plaistəusi:n]n.更新世;更新世岩Till冰碛beidellite[bai'delait]n.贝德石;铝膨润石ErosionandtransportationThesand-sizeeffect.Quartzandheavyminerals(zircon锆石,rutile金红石,magnetite磁铁矿,chromite铬铁矿)areenrichedinsandstone.DiagenesisSensitivetoredox

氧化还原反应

conditionsFeandMnaresolubleinanoxic(缺氧的)

conditions.Fe,Cu,Mo,Pb,Zn,V,Ni,S,Careclearlyenrichedinanoxicsedimentsduetoincorporationinsulphidesand/orabsorptiononorganiccompounds.Uisenrichedalsoinanoxicsedimentsduetoreductionofsoluble6+Utoinsoluble4+U.MetamorphismPoorlyunderstood.LiandPbmayincrease.MostelementsandparticularlyREE,Y,Th,HFSE,CrandScareimmobile.SedimentaryrocksascrustalsamplesInsolubleelements(log

4;Ksw

-4)arelikelytobetransferredalmostquantitativelyintoclasticsedimentsandgivethebestinformationregardingthesource-exposeduppercrust.REEinfine-grainedsedimentsprovidequantitativeinfoontheuppercrustcompositionQuantitativelytransferredintofine-grainedclasticsedimentsREEcomparisonof

shalesanduppercrustConstantelement(常量元素)ratiosintheuppercrustEstimationofuppercrustalcompositionMajorelements:

large-scalesamplingTraceelements:

large-scalesampling

fine-grainedclasticsediments

usingREEandtheirratiostootherelementsVariousuppercrustalmajorelementestimates

Taylor&McLennanShawetal.WedepohlCondieGaoetal.Rudnick&Gao

198519671995199319982002SiO26664.9364.9366.2165.4665.84TiO20.50.520.520.550.650.60Al2O315.214.6314.6314.9613.6514.31FeOT4.503.973.974.705.134.92MnO0.070.0680.070.10.10MgO2.22.242.242.422.522.47CaO4.24.124.123.63.313.46Na2O3.93.463.463.512.753.13K2O3.43.13.12.732.582.66H2O0.790.792.112.11P2O50.20.150.150.120.150.14Total100.1797.9897.9898.8098.4199.71Uppercrustalcompositionalestimates

(TaylorandMcLennan,1985)Comparisonofloessanduppercrustalcompositions(TaylorandMcLennan,1985)Part3-4-2ThedeepcrustMethodsofStudiesAmphibolite角闪岩-andgranulite-faciesxenolithsentrained携带mostlyinbasalts.ExposeddeepcrustalsectionsCorrelationofseismicvelocitiesofrockswithlithologiesHeatflowconstraintsCrustalstructurebasedondeepcrusalxenoliths

(Mengeletal.,1992)DeepCrustalXenolithsMostlygranulite-faciesExposedDeepCrustalSectionModelforexposeddeepcrustalcross-section

(PercivalandFountain,1992)P-waveandPoisson’s(泊松)ratiostructurealongtheexposedKapuskasingdeepcrustalsection

(PercivalandFountain,1994)P-wavevelocity(km)Poisson’sratioContrastsbetweengranulitexenolithsandterraingranulites

太古-

元古宙

后太古宙

力700-1000MPa1000-1500MPa

度25-35km35-50km

性中性和长英质为主

镁铁质-超镁铁质为主

SiO255-75%40-55%CorrelationofseismicvelocitieswithrocktypesCompressionalP-wavevelocity(Vp)ShearS-wavevelocity(Vs)Poisson’sratio(

)

=0.5{1–1/[(Vp/Vs)2–1]}Measurementof

seismicvelocities

ofrocksCalculationofvelocitiesindepthV(z)=V(0)+[(dV/dP)T

P+(dV/dT)PT]dzWhereV(0)andV(z)arevelcitiesatareferencestateandatdepthz.Forcommonrocks,(dV/dP)T=2

10-4to7

10-4kms-1MPa-1;(dV/dT)P=-2

10-4to-6

10-4kms-1

C-1

EffectofheatflowonVp

(RudnickandFountain,1995)150MPa

下侵入岩Vp随成分的变化

(FountainandChristensen,1989)Relationbetween

SiO2andVpof

granulites

(RudnickandFountain,1995)DensityvsVpPeridotiteEclogiteMaficgranulitePeridotite

橄榄岩Eclogite

榴辉岩Gabbro

辉长岩1、蛇纹岩2、石英岩3、花岗岩4、花岗闪长岩5、角闪岩相长英质片麻岩6、石英云母片岩7、绿片岩相变辉长岩8、辉长岩9、斜长角闪岩1、长英质角闪片麻岩2、长英质片麻岩3、中性麻粒岩4、斜长岩5、镁铁质麻粒岩6、斜长角闪岩7、麻粒岩相变泥质岩8、辉石岩9、榴辉岩10、纯橄榄岩/二辉橄榄岩Holbrooketal.(1992)Crustalstructureinvarioustectonicsettings

(RudnickandFountain,1995)Normativemineral(标准矿物)

compositionofcontinentalcrust

(TaylorandMcLennan,1995)ilmenite[‘ilmənait]n.[矿]钛铁矿hypersthene['haipəsθi:n]n.[矿]紫苏辉石Comparisonofcontinentalcrustandvariousbasalts

(Hoffmann,1994)compatibility[kəm,pætə'biləti]n.兼容性CompositionalcharacteristicsofcontinentalcrustTheuppercrustisgraniticwith66%SiO2andwithasignificantnegativeEuanomaly.Themiddlecrustistonalitic(闪长质)with61%SiO2.Thelowercrustismaficinmanyregionswith~52%SiO2andmaybemoreevolvedforsomecratons(e.g.,NorthChinaCraton)andcollisionbelts.RelativedepletioninNbandenrichmentinPbcharacterizethecontinentalcrustandcontinentalcrustalrocks-“thearcsignature”.Thetotalcontinentalcrusthasanandesitic(安山质)/granodioriticbulkcompositionwith59-62%.ItcontainsasignificantproportionofthebulksilicateEarth’sincompatibleelementbudget(33-35%ofRb,Ba,K,Pb,ThandU).Schematicmodelforgrowthandevolutionofthecontinentalcrust

(TaylorandMcLennan,1995)bombardment[bɔm'ba:dmənt]n.轰炸;炮击Continentalcrust

LaCePrNdSmEuGdTbDyHoErTmYbLu110100Rock/ChondriteEastChina(thisstudy;Eu/Eu*=0.80)Wedepohl(1995;Eu/Eu*=0.83)Rudnick&Fountain(1995;Eu/Eu*=0.98)Taylor&McLennan(1995;Eu/Eu*=1.00)TotalContinentalCrustContrastinglowercrustalvelocitiesforArcheanandProterozoicprovinces

(DurrheimandMooney,1991)ThefollowingslidesarenotusedinthelecturesGenerationoftholeiitic(拉斑玄武岩)andalkalinebasaltsfromachemicallyuniformmantleVariables(otherthanX)TemperaturePressureFigure10-2

Phasediagramofaluminouslherzolite(二辉橄榄岩)withmeltinginterval(gray),sub-solidusreactions,andgeothermalgradient.AfterWyllie,P.J.(1981).Geol.Rundsch.70,128-153.

Liquidsandresiduumofmeltedpyrolite(地幔岩)Figure10-9AfterGreenandRingwood(1967).

EarthPlanet.Sci.Lett.2,151-160.

tholeiite['θəuli:ait]n.[地]拉斑玄武岩granophyre['ɡrænəufaiə]n.花斑岩InitialConclusions:Tholeiitesfavoredbyshallowermelting25%meltingat<30km®tholeiite25%meltingat60km®olivinebasaltTholeiitesfavoredbygreater%partialmelting20%meltingat60km®alkalinebasaltincompatibles(alkalis)®initialmelts30%meltingat60km®tholeiiteCrystalFractionationofmagmasastheyriseTholeiite®alkalinebyFXatmedtohighPNotatlowPThermaldivideAlinpyroxenesatHiPLow-PFX®hi-Alshallowmagmas(“hi-Al”basalt)Figure10-10SchematicrepresentationofthefractionalcrystallizationschemeofGreenandRingwood(1967)andGreen(1969).AfterWyllie(1971).

TheDynamicEarth:TextbookinGeosciences.JohnWiley&Sons.

nephelinite['nefilinait]n.霞石岩picrite['pikrait]n.苦橄岩PrimarymagmasFormedatdepthandnotsubsequentlymodifiedbyFXorAssimilation(同化)CriteriaHighestMg#(100Mg/(Mg+Fe))really®

parentalmagmaExperimentalresultsoflherzolitemeltsMg#=66-75Cr>1000ppmNi>40

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论