版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年湖北省恩施土家族苗族自治州利川市七年级数学第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若关于x,y的多项式化简后不含二次项,则m=()A. B. C.- D.02.已知,,的值是()A.-1 B.1 C.5 D.153.近似数精确到()A.十分位 B.个位 C.十位 D.百位4.由太原开往运城的D5303次列车,途中有6个停车站,这次列车的不同票价最多有()A.28种 B.15种 C.56种 D.30种5.据报告,70周年国庆正式受阅人数约12000人,这个数据用科学记数表示()A.12×104人 B.1.2×104人 C.1.2×103人 D.12×103人6.单项式与的和是单项式,则的值是()A. B. C. D.7.下列各组代数式中,是同类项的是()A.5x2y与xy B.﹣5x2y与yx2 C.5ax2与yx2 D.83与x38.某商品标价x元,进价为400元,在商场开展的促销活动中,该商品按8折销售获利()A.(8x﹣400)元 B.(400×8﹣x)元 C.(0.8x﹣400)元 D.(400×0.8﹣x)元9.下列说法中,正确的个数为()①若,则点在第三象限②若点在第一象限的角平分线上,则③点到轴的距离为,到轴的距高为④若点的坐标为,点的坐标为,则直线轴A.个 B.个 C.个 D.个10.下列等式中,从左到右的变形是因式分解的是()A.2x(x-1)=2x2-2x B.x2-2x+3=x(x-2)+3C.(x+y)2=x2+2xy+y2 D.-x2+2x=-x(x-2)二、填空题(本大题共有6小题,每小题3分,共18分)11.把化成只含有正整数指数幂的形式为______.12.已知点A,B,C都在直线l上,点P是线段AC的中点.设,,则线段BC的长为________(用含a,b的代数式表示)13.将点向上平移2个单位长度得到点Q,则点Q的坐标为__________.14.如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数为_____.15.“的3倍与的和”用代数式表示为__________.16.据《2011年国民经济与社会发展统计公报》报道,2011年我国国民生产总值为471564亿元,471564亿元用科学记数法表示为(保留三个有效数字)_______元.三、解下列各题(本大题共8小题,共72分)17.(8分)张强到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为-1.张强从1楼出发,电梯上下楼层依次记录如下(单位:层):+4,-3,+10,-8,+12,-6,-2.(1)请你通过计算说明张强最后停在几楼;(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电a度.根据张强现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?18.(8分)如图,已知∠AOB=90°,射线OC绕点O从OA位置开始,以每秒4°的速度顺时针方向旋转;同时,射线OD绕点O从OB位置开始,以每秒1°的速度逆时针方向旋转.当OC与OA成180°时,OC与OD同时停止旋转.(1)当OC旋转10秒时,∠COD=°.(2)当旋转时间为秒时,OC与OD的夹角是30°.(3)当旋转时间为秒时,OB平分∠COD时.19.(8分)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE.(1)若∠BOC=60°,则∠AOF的度数为______;(2)若∠COF=x°,求∠BOC的度数。20.(8分)点C,D是半圆弧上的两个动点,在运动的过程中保持∠COD=100°.(1)如图①,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数;(2)如图②,已知∠AOC的度数为x,OE平分∠AOD,OF平分∠BOC,求∠EOF的度数.21.(8分)列方程解应用题:在课间活动中,小英、小丽和小敏在操场上画出、两个区域,一起玩投沙包游戏.沙包落在区城所得分值与落在区域所得分值不同.当每人各投沙包四次时,其落点和四次总分如图所示.(1)求沙包每次落在、两个区域的分值各是多少?(2)请求出小敏的四次总分.22.(10分)七、八年级学生分别到临洮、兰州博物馆参观,共590人,到临洮博物馆的人数是到兰州博物馆人数的2倍多56人,问到临洮博物馆参观的人数有多少人?23.(10分)一出租车某一天以家为出发地在东西两方向营运,向东为正,向西为负,行车里程(单位:)依先后次序记录如下:.(1)将最后一个乘客送到目的地时,出租车离家多远?在家什么方向?(2)若每千米的价格为2元,则司机一天的营业额是多少?(3)如果出租车送走最后一名乘客后需要返回家中,且出租车每千米耗油升,每升汽油6元,不计汽车的损耗,那么出租车司机收工回家是盈利还是亏损了?盈利(或亏损)多少钱?24.(12分)如图①,已知OC是∠AOB内部的一条射线,M、N分别为OA、OB上的点,线段OM、ON同时开始旋转,线段OM以30度/秒绕点O逆时针旋转,线段ON以10度/秒的速度绕点O顺时针旋转,当OM旋转到与OB重合时,线段OM、ON都停止旋转.设OM的旋转时间为t秒.(1)若∠AOB=140°,当t=2秒时,∠MON=,当t=4秒时,∠MON=;(2)如图②,若∠AOB=140°,OC是∠AOB的平分线,求t为何值时,两个角∠NOB与∠COM中的其中一个角是另一个角的2倍.(3)如图③,若OM、ON分别在∠AOC、∠COB内部旋转时,总有∠COM=3∠CON,请直接写出的值.
参考答案一、选择题(每小题3分,共30分)1、B【分析】将原式合并同类项,可得知二次项系数为6-7m,令其等于1,即可解决问题.【详解】解:∵原式=,∵不含二次项,∴6﹣7m=1,解得m=.故选:B.【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=1.2、A【分析】由a-b=3,c+d=2,两式相减即可得出.【详解】解:∵a-b=3,c+d=2,
∴(c+d)-(a-b)=2-3=-1,∴(b+c)-(a-d)=b+c-a+d=(c+d)-(a-b)=-1.
故选:A.【点睛】本题考查了多项式的运算、去括号和添括号,熟练掌握相关的知识是解题的关键,属于基础题.3、C【详解】根据近似数的精确度:近似数5.0×102精确到十位.故选C.考点:近似数和有效数字4、A【解析】本题考查了根据加法原理解决问题的能力,明确如果完成一件工作,有若干种类方法,每一类方法又有若干种不同的方法,那么完成这件工作的方法的总数就等于完成这件工作的方法种类的和.此题也可以根据握手问题来解决.1、本题同握手问题,根据加法原理解答;2、根据题意,分别有7种、6种、5种、4种、3种、2种、1种票价;3、根据加法原理,将各站的车票种数相加即可得解.【详解】方法一、由太原开往运城的D5303次列车,途中有6个停车站,这次列车的不同票价最多有8×72=28,故选方法2、由题意得,这次列车到达终点时一共停了7次∴不同票价最多有1+2+3+4+5+6+7=28(种)故选A【点睛】根据实际问题抽象出线段模型,进而确定答案,要注意是单程还是往返.加法原理(分类枚举).5、B【分析】科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【详解】由科学记数法的定义得:故选:B.【点睛】本题考查了科学记数法的定义,熟记定义是解题关键.6、D【分析】根据同类项的定义,可得a,b的值,进而即可求解.【详解】∵单项式与的和是单项式,∴单项式与是同类项,∴,解得:,∴=,故选D.【点睛】本题主要考查同类项的定义,根据同类项的定义,列出关于a,b的方程,是解题的关键.7、B【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】A、相同字母的指数不同,故A不是同类项;B、字母相同且相同字母的指数也相同,故B是同类项;C、D、字母不同,故C、D不是同类项;故选B.【点睛】本题考查了同类项,同类项是字母相同且相同字母的指数也相同.8、C【分析】根据题意,可以用代数式表示出该商品按8折销售所获利润,利润=售价-进价,售价为0.8x,进价为400,本题得以解决.【详解】解:由题意可得,
该商品按8折销售获利为:(0.8x-400)元,
故选C.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.9、C【分析】根据第三象限内点的坐标符号特点、坐标轴上点的坐标特点及点的坐标到坐标轴的距离逐一判断可得.【详解】①若,则a,b异号,故点在第二或第四象限,故错误;②若点在第一象限的角平分线上,则,正确;③点到轴的距离为,到轴的距高为,故错误;④若点的坐标为,点的坐标为,纵坐标相同,则直线轴,正确;故选C.【点睛】本题主要考查点的坐标,解题的关键是掌握点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点.10、D【分析】根据因式分解的定义逐项判断即可得.【详解】A、等式的右边不是乘积的形式,不是因式分解,此项不符题意;B、等式的右边不是乘积的形式,不是因式分解,此项不符题意;C、等式的右边不是乘积的形式,不是因式分解,此项不符题意;D、等式的右边是乘积的形式,且左右两边相等,是因式分解,此项符合题意;故选:D.【点睛】本题考查了因式分解,熟记定义是解题关键.二、填空题(本大题共有6小题,每小题3分,共18分)11、【分析】根据负整数指数幂的定义(a≠0)变形即可.【详解】把化成只含有正整数指数幂的形式为:故答案为:【点睛】本题考查的是负整数指数幂,掌握负整数指数幂的定义是关键.12、2b-a或2b+a或a-2b【分析】由于点A.B、C三点都在直线l上,点P是线段AC的中点,故分点B在A的右侧,点B在AP之间,点B在PC之间,点B在C的左侧四种情况进行讨论.【详解】解:当点B在A的右侧,如图∵,∴AP=b-a∵点P是线段AC的中点∴PC=AP=b-a∴BC=BA+AP+PC=a+(b-a)+(b-a)=2b-a当点B在AP之间,如图∵,∴AP=b+a∵点P是线段AC的中点∴PC=AP=b+a∴BC=BP+PC=b+(b+a)=2b+a当点B在PC之间,如图∵,∴AP=a-b∵点P是线段AC的中点∴PC=AP=a-b,∴BC=PC-PB=(a-b)-b=a-2b当点B在C的左侧,如图∵,∴AP=a-b∵点P是线段AC的中点∴AC=2AP=2a-2b,∴BC=AB-AC=a-(2a-2b)=2b-a综上所述:BC=2b-a或BC=2b+a,或BC=a-2b故答案为:2b-a或2b+a或a-2b【点睛】本题考查了线段的中点,注意图形不确定时需要进行分类讨论是解题的关键.13、【分析】根据向上平移,横坐标不变,纵坐标加可得答案.【详解】点向上平移2个单位长度得到∴点Q的坐标为故答案为:.【点睛】此题主要考查了坐标与图形变化--平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14、6n﹣1.【分析】本题中可根据图形分别得出n=1,2,3,4时的小屋子需要的点数,然后找出规律得出第n个小屋子需要的点数,然后将10代入求得的规律即可求得有多少个点.【详解】依题意得:(1)摆第1个“小屋子”需要5个点;摆第2个“小屋子”需要11个点;摆第3个“小屋子”需要17个点.当n=n时,需要的点数为(6n﹣1)个.故答案为6n﹣1.【点睛】考查了规律型:图形的变化,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.15、3x+y【分析】先表示x的3倍,再求与y的和即可.【详解】根据题意得:x的3倍与y的和表示为:3x+y.故答案为3x+y.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.16、4.72×1013【分析】首先用科学记数法的表示成的形式,其中1≤|a|<10,n为整数.再保留有效数字,有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【详解】解:471564亿=47156400000000=4.71564×≈4.72×,故答案为:【点睛】本题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.掌握以上知识是解题的关键.三、解下列各题(本大题共8小题,共72分)17、(1)2楼;(2)度.【分析】(1)根据有理数的加法可判断是否回到1楼;(2)根据上楼、下楼都耗电,可判断他办事时电梯需要耗电多少度.【详解】解:(1)答:张强最后停在2楼(2)(度)答:他办事时电梯需要耗电度.【点睛】本题主要考查了有理数的加法运算,(2)中注意要求出上下楼层的绝对值,而不是利用(1)中的结论求解,这是本题容易出错的地方.18、(1)∠COD=40°;(2)12或24;(3)1.【解析】试题分析:(1)根据旋转的速度和旋转的时间分别求出∠AOC和∠BOD的度数,然后根据∠COD=∠AOB-∠AOC-∠BOD即可计算得出结论;(2)设转动t秒,OC与OD的夹角是1度,①如图1,列方程即可得到结论;②如图2,列方程即可得到结论;(3)如图3,设转动m秒时,根据角平分线的定义列方程即可得到结论.试题解析:解:(1)∵射线OC绕点O从OA位置开始,以每秒4°的速度顺时针方向旋转,∴当OC旋转10秒时,∠COD=∠AOB-4°×10-1°×10=40°,故答案为40;(2)设转动t秒,OC与OD的夹角是1度,①如图1,4t+t=90-1,t=12,②如图2,4t+t=90+1,t=24,∴旋转的时间是12秒或24秒,故答案为12或24;(3)如图3,设转动m秒时,OB平分∠COD,则4m-90=m,解得,m=1,∴旋转的时间是1秒,故答案为1.点睛:本题考查了角的有关计算和角平分线定义的应用,根据题意画出图形并列出方程是解题的关键,注意分类讨论思想的应用.19、(1)15°(2)∠BOC=270°-2x°【解析】(1)根据对顶角的性质得到∠AOD=∠BOC=60°,根据垂直的定义得到∠DOE=90°,根据角平分线的定义即可得到结论;(2)由垂直的定义得到∠DOE=∠COE=90°,根据角平分线的定义得到∠AOE=2∠EOF=180°-2x°,根据对顶角的性质即可得到结论.【详解】∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=12∠AOE=15°故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°−90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°−180°,∴∠AOD=90°−∠AOE=270°−2x°,∴∠BOC=∠AOD=270°−2x°.故答案为:270°−2x°.【点睛】此题考查对顶角的性质,垂直的定义,角平分线的定义,解题关键在于得到∠AOE的度数20、(1)∠EOF=140°;(2)∠EOF=40°.【分析】(1)由角平分线的定义可得∠EOC=∠AOE=∠AOC,∠DOF=∠BOF=∠BOD,则可求∠EOF的度数;(2)由题意可得∠AOD=(100+x)°,∠BOC=(180﹣x)°,由角平分线的性质可得∠DOE=∠AOD,∠COF=∠BOC,即可求∠EOF的度数.【详解】解:(1)∵OE平分∠AOC,OF平分∠BOD,∴∠EOC=∠AOE=∠AOC,∠DOF=∠BOF=∠BOD,∵∠COD=100°∴∠AOC+∠DOB=180°﹣∠COD=80°,∵∠EOF=∠COE+∠DOF+∠COD∴∠EOF=(∠AOC+∠BOD)+∠COD=140°(2)∵∠AOC=x°∴∠AOD=(100+x)°,∠BOC=(180﹣x)°∵OE平分∠AOD,OF平分∠BOC,∴∠DOE=∠AOD,∠COF=∠BOC.∵∠EOF=∠DOE+∠COF﹣∠COD∴∠EOF=(100+x+180﹣x)﹣100=40°【点睛】考查了角平分线的性质,熟练运用角平分线的性质是本题的关键.21、(1)A区域所得分值为8分,则B区域所得分值为6分;(2)小敏的四次总数是26分.【分析】(1)“小英的总分30分”,设沙包落在A区域得分,落在B区域得分,再根据“小丽的总分是28分”作为相等关系列方程组求得A区,B区的得分;
(2)小敏的总分=沙包落在A区域得分×1+沙包落在B区域得分×3,依此计算即可求解.【详解】(1)设每次落在A区域所得分值为x分,则每次落在B区域所得分值为(30-3x)分,,解得:8,则30-3x=30-3×8=6,答:A区域所得分值为8分,则B区域所得分值为6分;(2)小敏的四次总分是:8+6×3=26(分),答:小敏的四次总数是26分.【点睛】本题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22、人【分析】设到临洮博物馆人,再根据到临洮博物馆的人数是到兰州博物馆人数的2倍多56人列出方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 返聘人员安全培训内容课件
- 车险查勘员培训
- 车队日常安全培训计划课件
- 车间高温安全培训课件
- 2026年省太原市教师职称考试(公共科目)中学仿真试题及答案
- 酒店前厅服务程序制度
- 酒店应急预案处理流程制度
- 2025年二手车市场研究报告
- 银行反洗钱工作制度
- 2026年辅警年度考核个人工作总结报告
- 电工承包简单合同(2篇)
- 模切管理年终工作总结
- 售后工程师述职报告
- 粉刷安全晨会(班前会)
- 2024年国网35条严重违章及其释义解读-知识培训
- 部编版八年级语文上册课外文言文阅读训练5篇()【含答案及译文】
- 高三英语一轮复习人教版(2019)全七册单元写作主题汇 总目录清单
- 工业区物业服务手册
- 大学基础课《大学物理(一)》期末考试试题-含答案
- 道德与法治五年级上册练习测试题带答案(模拟题)
- 招标代理机构内部管理制度
评论
0/150
提交评论