2024届四川省宜宾市叙州区二中数学高一下期末统考模拟试题含解析_第1页
2024届四川省宜宾市叙州区二中数学高一下期末统考模拟试题含解析_第2页
2024届四川省宜宾市叙州区二中数学高一下期末统考模拟试题含解析_第3页
2024届四川省宜宾市叙州区二中数学高一下期末统考模拟试题含解析_第4页
2024届四川省宜宾市叙州区二中数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省宜宾市叙州区二中数学高一下期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.点是空间直角坐标系中的一点,过点作平面的垂线,垂足为,则点的坐标为()A.(1,0,0) B. C. D.2.已知中,,,,那么角等于()A. B. C.或 D.3.已知a,b,c满足,那么下列选项一定正确的是()A. B. C. D.4.()A.4 B. C.1 D.25.已知是第三象限的角,若,则A. B. C. D.6.在中,,则一定是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形7.某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则下列结论错误的是()A.B.甲得分的方差是736C.乙得分的中位数和众数都为26D.乙得分的方差小于甲得分的方差8.已知函数f(x),则f[f(2)]=()A.1 B.2 C.3 D.49.已知函数在区间上至少取得2次最大值,则正整数t的最小值是()A.6 B.7 C.8 D.910.已知组数据,,…,的平均数为2,方差为5,则数据2+1,2+1,…,2+1的平均数与方差分别为()A.=4,=10 B.=5,=11C.=5,=20 D.=5,=21二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则__________.12.已知,,则________(用反三角函数表示)13.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.14.等比数列的首项为,公比为,记,则数列的最大项是第___________项.15.已知求______________.16.函数的最小正周期为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.18.如图,在三棱锥中,平面平面,,点,,分别为线段,,的中点,点是线段的中点.求证:(1)平面;(2).19.如图,在四棱锥中,平面,底面是棱长为的菱形,,,是的中点.(1)求证://平面;(2)求直线与平面所成角的正切值.20.已知.(1)求的坐标;(2)设,求数列的通项公式;(3)设,,其中为常数,,求的值.21.设二次函数.(1)若对任意实数,恒成立,求实数x的取值范围;(2)若存在,使得成立,求实数m的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

根据空间直角坐标系的坐标关系,即可求得点的坐标.【题目详解】空间直角坐标系中点过点作平面的垂线,垂足为,可知故选:B【题目点拨】本题考查了空间直角坐标系及坐标关系,属于基础题.2、B【解题分析】

先由正弦定理求出,进而得出角,再根据大角对大边,大边对大角确定角.【题目详解】由正弦定理得:,,∴或,∵,∴,∴,故选B.【题目点拨】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.3、D【解题分析】

c<b<a,且ac<1,可得c<1且a>1.利用不等式的基本性质即可得出.【题目详解】∵c<b<a,且ac<1,∴c<1且a>1,b与1的大小关系不定.∴满足bc>ac,ac<ab,故选D.【题目点拨】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.4、A【解题分析】

分别利用和差公式计算,相加得答案.【题目详解】故答案为A【题目点拨】本题考查了正切的和差公式,意在考查学生的计算能力.5、D【解题分析】

根据是第三象限的角得,利用同角三角函数的基本关系,求得的值.【题目详解】因为是第三象限的角,所以,因为,所以解得:,故选D.【题目点拨】本题考查余弦函数在第三象限的符号及同角三角函数的基本关系,即已知值,求的值.6、B【解题分析】

利用余弦定理、三角形面积公式、正弦定理,求得和,通过等式消去,求得的两个值,再判断三角形的形状.【题目详解】,又,,,又,,又,,,,,,解得:或,一定是直角三角形.【题目点拨】本题在求解过程中对存在两组解,要注意解答的完整性与严谨性,综合两种情况,再对的形状作出判断.7、B【解题分析】

根据题意,依次分析选项,综合即可得答案.【题目详解】根据题意,依次分析选项:对于A,甲得分的极差为32,30+x﹣6=32,解得:x=8,A正确,对于B,甲得分的平均值为,其方差为,B错误;对于C,乙的数据为:12、25、26、26、31,其中位数、众数都是26,C正确,对于D,乙得分比较集中,则乙得分的方差小于甲得分的方差,D正确;故选:B.【题目点拨】本题考查茎叶图的应用,涉及数据极差、平均数、中位数、众数、方差的计算,属于基础题.8、B【解题分析】

根据分段函数的表达式求解即可.【题目详解】由题.故选:B【题目点拨】本题主要考查了分段函数的求值,属于基础题型.9、C【解题分析】

先根据三角函数的性质可推断出函数的最小正周期为6,进而推断出,进而求得t的范围,进而求得t的最小值.【题目详解】函数的周期T=6,则,∴,∴正整数t的最小值是8.故选:C.【题目点拨】本题主要考查三角函数的周期性以及正弦函数的简单性质,属于基础题.10、C【解题分析】

根据题意,利用数据的平均数和方差的性质分析可得答案.【题目详解】根据题意,数据,,,的平均数为2,方差为5,则数据,,,的平均数,其方差;故选.【题目点拨】本题考查数据的平均数、方差的计算,关键是掌握数据的平均数、方差的计算公式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

对已知等式的左右两边同时平方,利用同角的三角函数关系式和二倍角的正弦公式,可以求出的值,再利用二倍角的余弦公式可以求出.【题目详解】因为,所以,即,所以.【题目点拨】本题考查了同角的三角函数关系,考查了二倍角的正弦公式和余弦公式,考查了数学运算能力.12、【解题分析】∵,,∴.故答案为13、【解题分析】

列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率.【题目详解】所有的基本事件有:、、、、、、、、、,共个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:、、,共个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为,故答案为.【题目点拨】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.14、【解题分析】

求得,则可将问题转化为求使得最大且使得为偶数的正整数的值,利用二次函数的基本性质求解即可.【题目详解】由等比数列的通项公式可得,,则问题转化为求使得最大且使得为偶数的正整数的值,,当时,取得最大值,此时为偶数.因此,的最大项是第项.故答案为:.【题目点拨】本题考查等比数列前项积最值的计算,将问题进行转化是解题的关键,考查分析问题和解决问题的能力,属于中等题.15、23【解题分析】

直接利用数量积的坐标表示求解.【题目详解】由题得.故答案为23【题目点拨】本题主要考查平面向量的数量积的计算,意在考查学生对该知识的理解掌握水平,属于基础题.16、.【解题分析】

根据正切型函数的周期公式可计算出函数的最小正周期.【题目详解】由正切型函数的周期公式得,因此,函数的最小正周期为,故答案为.【题目点拨】本题考查正切型函数周期的求解,解题的关键在于正切型函数周期公式的应用,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在(3)1【解题分析】

(Ⅰ),得,解得,或.由于,所以.因为,所以.故,整理,得,即.因为是递增数列,且,故,因此.则数列是以2为首项,为公差的等差数列.所以.………………5分(Ⅱ)满足条件的正整数不存在,证明如下:假设存在,使得,则.整理,得,①显然,左边为整数,所以①式不成立.故满足条件的正整数不存在.……1分(Ⅲ),不等式可转化为.设,则.所以,即当增大时,也增大.要使不等式对于任意的恒成立,只需即可.因为,所以.即.所以,正整数的最大值为1.………14分18、(1)见解析;(2)见解析【解题分析】

(1)连AF交BE于Q,连QO,推导出Q是△PAB的重心,从而FG∥QO,由此能证明FG∥平面EBO.(2)推导出BO⊥AC,从而BO⊥面PAC,进而BO⊥PA,再求出OE⊥PA,由此能证明PA⊥平面EBO,利用线面垂直的性质可证PA⊥BE.【题目详解】(1)连接AF交BE于Q,连接QO,因为E,F分别为边PA,PB的中点,所以Q为△PAB的重心,可得:2,又因为O为线段AC的中点,G是线段CO的中点,所以2,于是,所以FG∥QO,因为FG⊄平面EBO,QO⊂平面EBO,所以FG∥平面EBO.(2)因为O为边AC的中点,AB=BC,所以BO⊥AC,因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BO⊂平面ABC,所以BO⊥平面PAC,因为PA⊂平面PAC,所以BO⊥PA,因为点E,O分别为线段PA,AC的中点,所以EO∥PC,因为PA⊥PC,所以PA⊥EO,又BO∩OE=O,BO,EO⊂平面EBO,所以PA⊥平面EBO,因为BE⊂平面EBO,所以PA⊥BE.【题目点拨】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.19、(1)见解析(2)【解题分析】

(1)连接交于点,则为的中点,由中位线的性质得出,再利用直线与平面平行的判定定理得出平面;(2)取的中点,连接,由中位线的性质得到,且,可得出平面,于此得出直线与平面所成的角为,然后在中计算即可.【题目详解】(1)连接,交于点,连接,由底面是菱形,知是的中点,又是的中点,∴.又∵平面,平面,∴平面;(2)取中点,连接,∵分别为的中点,∴,∵平面,∴平面,∴直线与平面所成角为,∵,,∴.【题目点拨】本题考查直线与平面平行的判定,考查直线与平面所成角的计算,在计算直线与平面所成角时,要注意过点作平面的垂线,构造出直线与平面所成的角,再选择合适的直角三角形求解,考查逻辑推理能力与计算能力,属于中等题.20、(1);(2);(3)当时,;当或时,.【解题分析】

(1)利用题中定义结合平面向量加法的坐标运算可得出结果;(2)利用等差数列的求和公式和平面向量加法的坐标运算可得出数列的通项公式;(3)先计算出的表达式,然后分、、三种情况计算出的值.【题目详解】(1)由题意得;(2);(3).①当时,;②当时,;③当时,.【题目点拨】本题考查平面向量坐标的线性运算,同时也考查等差数列求和以及数列极限的运算,计算时要充分利用数列极限的运算法则进行求解,综合性较强,属于中等题.21

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论