湖南省浏阳一中、醴陵一中2024届数学高一下期末教学质量检测试题含解析_第1页
湖南省浏阳一中、醴陵一中2024届数学高一下期末教学质量检测试题含解析_第2页
湖南省浏阳一中、醴陵一中2024届数学高一下期末教学质量检测试题含解析_第3页
湖南省浏阳一中、醴陵一中2024届数学高一下期末教学质量检测试题含解析_第4页
湖南省浏阳一中、醴陵一中2024届数学高一下期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省浏阳一中、醴陵一中2024届数学高一下期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是一个几何体的三视图,它对应的几何体的名称是()A.棱台 B.圆台 C.圆柱 D.圆锥2.已知中,,,,则B等于()A. B.或 C. D.或3.已知函数则的是A. B. C. D.4.在中,已知,则的面积为()A. B. C. D.5.已知直线经过点,且倾斜角为,则直线的方程为()A. B.C. D.6.已知两条直线m,n,两个平面α,β,给出下面四个命题:①m//n,m⊥α⇒n⊥α;②α//β,m⊂α,n⊂β⇒m//n;③m//n,m//α⇒n//α;④α//β,m//n,m⊥α⇒n⊥β其中正确命题的序号是()A.①④B.②④C.①③D.②③7.若,则下列不等式恒成立的是A. B. C. D.8.已知,若,则的值是().A.-1 B.1 C.2 D.-29.在长方体中,,,则直线与平面所成角的正弦值为()A. B. C. D.10.已知等差数列,前项和为,,则()A.140 B.280 C.168 D.56二、填空题:本大题共6小题,每小题5分,共30分。11.圆的一条经过点的切线方程为______.12.设数列的前项和,若,,则的通项公式为_____.13.已知函数.利用课本中推导等差数列的前项和的公式的方法,可求得的值为_____.14.按照如图所示的程序框图,若输入的x值依次为,0,1,运行后,输出的y值依次为,,,则________.15.已知常数θ∈(0,π2),若函数f(x)在Rf(x)=2sinπx-1≤x≤1log是________.16.函数在内的单调递增区间为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求的值;(2)求的值.18.已知平面向量,,,其中,(1)若为单位向量,且,求的坐标;(2)若且与垂直,求向量,夹角的余弦值.19.如图,在平面四边形中,,,的面积为.⑴求的长;⑵若,,求的长.20.已知圆经过,,三点.(1)求圆的标准方程;(2)若过点N的直线被圆截得的弦AB的长为,求直线的倾斜角.21.如图,矩形所在平面与以为直径的圆所在平面垂直,为中点,是圆周上一点,且,,.(1)求异面直线与所成角的余弦值;(2)设点是线段上的点,且满足,若直线平面,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

直接由三视图还原原几何体得答案.【题目详解】解:由三视图还原原几何体如图,该几何体为圆台.故选:.【题目点拨】本题考查三视图,关键是由三视图还原原几何体,属于基础题.2、D【解题分析】

根据题意和正弦定理求出sinB的值,由边角关系、内角的范围、特殊角的三角函数值求出B.【题目详解】由题意得,△ABC中,a=1,,A=30°,由得,sinB,又b>a,0°<B<180°,则B=60°或B=120°,故选:D.【题目点拨】本题考查正弦定理,以及边角关系的应用,注意内角的范围,属于基础题.3、D【解题分析】

根据自变量的范围确定表达式,从里往外一步步计算即可求出.【题目详解】因为,所以,因为,所以==3.【题目点拨】主要考查了分段函数求值问题,以及对数的运算,属于基础题.对于分段函数求值问题,一定要注意根据自变量的范围,选择正确的表达式代入求值.4、B【解题分析】

根据三角形的面积公式求解即可.【题目详解】的面积.

故选:B【题目点拨】本题主要考查了三角形的面积公式,属于基础题.5、C【解题分析】

根据倾斜角求得斜率,再根据点斜式写出直线方程,然后化为一般式.【题目详解】倾斜角为,斜率为,由点斜式得,即.故选C.【题目点拨】本小题主要考查倾斜角与斜率对应关系,考查直线的点斜式方程和一般式方程,属于基础题.6、A【解题分析】依据线面垂直的判定定理可知命题①是正确的;对于命题②,直线m,n还有可能是异面,因此不正确;对于命题③,还有可能直线n⊂α,因此③命题不正确;依据线面垂直的判定定理可知命题④是正确的,故应选答案A.7、D【解题分析】∵∴设代入可知均不正确对于,根据幂函数的性质即可判断正确故选D8、C【解题分析】

先求出的坐标,再利用向量平行的坐标表示求出c的值.【题目详解】由题得,因为,所以2(c-2)-2×0=0,所以c=2.故选C【题目点拨】本题主要考查向量的坐标计算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.9、D【解题分析】

由题意,由于图形中已经出现了两两垂直的三条直线,所以可以利用空间向量的方法求解直线与平面所成的夹角.【题目详解】解:以点为坐标原点,以所在的直线为轴、轴、轴,建立空间直角坐标系,

则,

为平面的一个法向量.

∴直线与平面所成角的正弦值为.故选:D.【题目点拨】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系,利用向量方法解决立体几何问题.10、A【解题分析】由等差数列的性质得,,其前项之和为,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

根据题意,设为,设过点圆的切线为,分析可得在圆上,求出直线的斜率,分析可得直线的斜率,由直线的点斜式方程计算可得答案.【题目详解】根据题意,设为,设过点圆的切线为,圆的方程为,则点在圆上,则,则直线的斜率,则直线的方程为,变形可得,故答案为.【题目点拨】本题考查圆的切线方程,注意分析点与圆的位置关系.12、【解题分析】

已知求,通常分进行求解即可。【题目详解】时,,化为:.时,,解得.不满足上式.∴数列在时成等比数列.∴时,.∴.故答案为:.【题目点拨】本题主要考查了数列通项式的求法:求数列通项式常用的方法有累加法、定义法、配凑法、累乘法等。13、1.【解题分析】

由题意可知:可以计算出的值,最后求出的值.【题目详解】设,,所以有,因为,因此【题目点拨】本题考查了数学阅读能力、知识迁移能力,考查了倒序相加法.14、5【解题分析】

根据程序框图依次计算出、、后即可得解.【题目详解】由程序框图可知,;,;,.所以.故答案为:.【题目点拨】本题考查了程序框图的应用,属于基础题.15、15【解题分析】

根据f(-1【题目详解】∵函数f(x)在R上恒有f(-1∴f-∴函数周期为4.∵常数θ∈(0,π∴cos∴函数y=f(x)-cosθ-1在区间[-5,14]上零点,即函数y=f(x) (x∈[-5,14])与直线由f(x)=2sinπx由图可知,在一个周期内,函数y=f(x)-cos故函数y=f(x)-cosθ-1在区间故填15.【题目点拨】本题主要考查了函数零点的个数判断,涉及数形结合思想在解题中的运用,属于难题.16、【解题分析】

将函数进行化简为,求出其单调增区间再结合,可得结论.【题目详解】解:,递增区间为:,可得,在范围内单调递增区间为。故答案为:.【题目点拨】本题考查了正弦函数的单调区间,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)20,(2)【解题分析】

(1)先利用同角三角函数的基本关系求得cos和tan的值,进而利用二倍角公式把sin2展开,把sin和cos的值代入即可.(2)先利用诱导公式使=tan(﹣),再利用正切的两角和公式展开后,把tanα的值代入即可求得答案.【题目详解】(1)由,得,所以=(2)∵,∴【题目点拨】本题主要考查了三角函数的化简求值的问题.要求学生能灵活运用三角函数的基本公式.18、(1)或;(2).【解题分析】

(1)设,根据和列出关于的方程求解即可.(2)根据垂直数量积为0,代入的模长,求解得.再根据夹角公式求解即可.【题目详解】(1)设,由和可得:∴或,∴或(2)∵,即,又,,∴,∴向量,夹角的余弦值【题目点拨】本题主要考查了向量平行的性质与单位向量的求解.同时也考查了根据数量积与模长求解向量夹角的方法等.属于中档题.19、(1)(2)【解题分析】

(1)由三角形的面积公式求得,再由余弦定理即可得到的长;(2)由(1)可得,在中,利用正弦定理即可得的长.【题目详解】⑴∵,,的面积为∴∴∴由余弦定理得∴⑵由(1)知中,,∴∵,∴又∵,∴在中,由正弦定理得即,∴【题目点拨】本题考查正弦定理、余弦定理、面积公式在三角形中的综合应用,考查学生的计算能力,属于基础题.20、(1)(2)30°或90°.【解题分析】

(1)解法一:将圆的方程设为一般式,将题干三个点代入圆的方程,解出相应的参数值,即可得出圆的一般方程,再化为标准方程;解法二:求出线段和的中垂线方程,将两中垂线方程联立求出交点坐标,即为圆心坐标,然后计算为圆的半径,即可写出圆的标准方程;(2)先利用勾股定理计算出圆心到直线的距离为,并对直线的斜率是否存在进行分类讨论:一是直线的斜率不存在,得出直线的方程为,验算圆心到该直线的距离为;二是当直线的斜率存在时,设直线的方程为,并表示为一般式,利用圆心到直线的距离为得出关于的方程,求出的值.结合前面两种情况求出直线的倾斜角.【题目详解】(1)解法一:设圆的方程为,则∴即圆为,∴圆的标准方程为;解法二:则中垂线为,中垂线为,∴圆心满足∴,半径,∴圆的标准方程为.(2)①当斜率不存在时,即直线到圆心的距离为1,也满足题意,此时直线的倾斜角为90°,②当斜率存在时,设直线的方程为,由弦长为4,可得圆心到直线的距离为,,∴,此时直线的倾斜角为30°,综上所述,直线的倾斜角为30°或90°.【题目点拨】本题考查圆的方程以及直线截圆所得弦长的计算,在求直线与圆所得弦长的计算中,问题的核心要转化为弦心距的计算,弦心距的计算主要有以下两种方式:一是利用勾股定理计算,二是利用点到直线的距离公式计算圆心到直线的距离.21、(1);(2)1【解题分析】

(1)取中点,连接,即为所求角。在中,易得MC,NC的长,MN可在直角三角形中求得。再用余弦定理易求得夹角。(2)连接,连接和交于点,连接,易得,所以为的中位线,所以为中点,所以的值为1。【题目详解】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论