




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省常州市田家炳高级中学数学高一下期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则()A. B. C.2 D.2.在,内角所对的边分别为,且,则()A. B. C. D.13.设满足约束条件,则的最大值为()A.3 B.9 C.12 D.154.已知点G为的重心,若,,则=()A. B. C. D.5.已知,,,,那么()A. B. C. D.6.某人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.只有一次中靶C.两次都中靶D.两次都不中靶7.若关于的方程,当时总有4个解,则可以是()A. B. C. D.8.若,且为第四象限角,则的值等于A. B. C. D.9.已知圆经过点,且圆心为,则圆的方程为A. B.C. D.10.已知集,集合,则A.(-2,-1) B.(-1,0) C.(0,2) D.(-1,2)二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域记作集合,随机地投掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有点数,,,),记骰子向上的点数为,则事件“”的概率为________.12.一组数据2,4,5,,7,9的众数是2,则这组数据的中位数是_________.13.已知实数满足条件,则的最大值是________.14.若直线与直线平行,则实数a的值是________.15.如图所示,正方体的棱长为3,以其所有面的中心为顶点的多面体的体积为_____.16.给出以下四个结论:①平行于同一直线的两条直线互相平行;②垂直于同一平面的两个平面互相平行;③若,是两个平面;,是异面直线;且,,,,则;④若三棱锥中,,,则点在平面内的射影是的垂心;其中错误结论的序号为__________.(要求填上所有错误结论的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,为常数,且,,.(I)若方程有唯一实数根,求函数的解析式.(II)当时,求函数在区间上的最大值与最小值.(III)当时,不等式恒成立,求实数的取值范围.18.如图,在四棱锥中,平面,,,,点Q在棱AB上.(1)证明:平面.(2)若三棱锥的体积为,求点B到平面PDQ的距离.19.已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为.(1)求的解析式及最小正周期;(2)求的单调递增区间.20.如图,在矩形ABCD中,AB=3,BC=2,点M,N分别是边AB,CD上的点,且MN∥BC,.若将矩形ABCD沿MN折起使其形成60°的二面角(如图).(1)求证:平面CND⊥平面AMND;(2)求直线MC与平面AMND所成角的正弦值.21.已知,函数,.(1)若在上单调递增,求正数的最大值;(2)若函数在内恰有一个零点,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】
将转化为,结合二倍角的正切公式即可求出.【题目详解】故选D【题目点拨】本题主要考查了二倍角的正切公式,关键是将转化为,利用二倍角的正切公式求出,属于基础题.2、C【解题分析】
直接利用余弦定理求解.【题目详解】由余弦定理得.故选C【题目点拨】本题主要考查余弦定理解三角形,意在考查学生对该知识的理解掌握水平,属于基础题.3、C【解题分析】所以,过时,的最小值为12。故选C。4、B【解题分析】
由重心分中线为,可得,又(其中是中点),再由向量的加减法运算可得.【题目详解】设是中点,则,又为的重心,∴.故选B.【题目点拨】本题考查向量的线性运算,解题关键是掌握三角形重心的性质,即重心分中线为两段.5、C【解题分析】由于故,故,所以.由于,由于,所以,故.综上所述选.6、D【解题分析】
根据互斥事件的定义逐个分析即可.【题目详解】“至少有一次中靶”与“至多有一次中靶”均包含中靶一次的情况.故A错误.“至少有一次中靶”与“只有一次中靶”均包含中靶一次的情况.故B错误.“至少有一次中靶”与“两次都中靶”均包含中靶两次的情况.故C错误.根据互斥事件的定义可得,事件“至少有一次中靶”的互斥事件是“两次都不中靶”.故选:D【题目点拨】本题主要考查了互斥事件的辨析,属于基础题型.7、D【解题分析】
根据函数的解析式,写出与的解析式,再判断对应方程在时解的个数.【题目详解】对,,,;方程,当时有4个解,当时有3个解,当时有2个解,不符合;对,,,;方程,当时有2个解,当时有3个解,当时有4个解,不符合;对,,,;方程,当时有4个解,当时有3个解,当时有2个解,不符合;对,,,;方程,当时恒有4个解,符合题意.【题目点拨】本题考查了函数与方程的应用问题,考查数形结合思想的运用,对综合能力的要求较高.8、D【解题分析】试题分析:∵为第四象限角,,∴,.故选D.考点:同角间的三角函数关系.【点评】同角三角函数的基本关系式揭示了同一个角三角函数间的相互关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.9、D【解题分析】
先计算圆半径,然后得到圆方程.【题目详解】因为圆经过,且圆心为所以圆的半径为,则圆的方程为.故答案选D【题目点拨】本题考查了圆方程,先计算半径是解题的关键.10、D【解题分析】
根据函数的单调性解不等式,再解绝对值不等式,最后根据交集的定义求解.【题目详解】由得,由得,所以,故选D.【题目点拨】本题考查指数不等式和绝对值不等式的解法,集合的交集.指数不等式要根据指数函数的单调性求解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】要使函数有意义,则且,即且,即,随机地投掷一枚质地均匀的正方体骰子,记骰子向上的点数为,则,则事件“”的概率为.12、【解题分析】
根据众数的定义求出的值,再根据中位数的定义进行求解即可.【题目详解】因为一组数据2,4,5,,7,9的众数是2,所以,这一组数据从小到大排列为:2,2,4,5,7,9,因此这一组数据的中位数为:.故答案为:【题目点拨】本题考查了众数和中位数的定义,属于基础题.13、8【解题分析】
画出满足约束条件的可行域,利用目标函数的几何意义求解最大值即可.【题目详解】实数,满足条件的可行域如下图所示:将目标函数变形为:,则要求的最大值,即使直线的截距最大,由图可知,直线过点时截距最大,,故答案为:8.【题目点拨】本题考查线性规划的简单应用,解题关键是明确目标函数的几何意义.14、0【解题分析】
解方程即得解.【题目详解】因为直线与直线平行,所以,所以或.当时,两直线重合,所以舍去.当时,两直线平行,满足题意.故答案为:【题目点拨】本题主要考查两直线平行的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.15、【解题分析】
该多面体为正八面体,将其转化为两个正四棱锥,通过计算两个正四棱锥的体积计算出正八面体的体积.【题目详解】以正方体所有面的中心为顶点的多面体为正八面体,也可以看作是两个正四棱锥的组合体,每一个正四棱锥的侧棱长与底面边长均为.则其中一个正四棱锥的高为h.∴该多面体的体积V.故答案为:【题目点拨】本小题主要考查正八面体、正四棱锥体积的计算,属于基础题.16、②【解题分析】
③①可由课本推论知正确;②可举反例;④可进行证明.【题目详解】命题①平行于同一直线的两条直线互相平行,由课本推论知是正确的;②垂直于同一平面的两个平面互相平行,是错误的,例如正方体的上底面,前面和右侧面,是互相垂直的关系;③根据课本推论知结论正确;④若三棱锥中,,,则点在平面内的射影是的垂心这一结论是正确的;作出B在底面的射影O,连结AO,DO,则,同理,,进而得到O为三角形的垂心.
故答案为②【题目点拨】这个题目考查了命题真假的判断,一般这类题目可以通过课本的性质或者结论进行判断;也可以通过举反例来解决这个问题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II);;(III).【解题分析】
(I)根据方程ax2+(b-1)x=0有唯一解,以及列方程求解即可;(II)根据二次函数的性质,函数的单调性,即可求得求得最值,(III)分离参数,构造函数,求出函数的最值即可.【题目详解】∵,∴,∴.(I)方程有唯一实数根,即方程有唯一解,∴,解得∴(II)∵,∴,,若,若.(III)解法一、当时,不等式恒成立,即:在区间上恒成立,设,显然函数在区间上是减函数,,当且仅当时,不等式在区间上恒成立,因此.解法二:因为当时,不等式恒成立,所以时,的最小值,当时,在单调递减,恒成立,而,所以时不符合题意.当时,在单调递增,的最小值为,所以,即即可,综上所述,.18、(1)证明见解析;(2).【解题分析】
(1)线面垂直只需证明PD和平面内两条相交直线垂直即可,易得,另外中已知三边长通过勾股定理易得,所以平面.(2)点B到平面PDQ的距离通过求得三棱锥的体积和面积即可,而,带入数据求解即可.【题目详解】(1)证明:在中,,,所以.所以是直角三角形,且,即.因为平面PAD,平面PAD,所以.因为,所以平面ABCD.(2)解:设.因为.,所以的面积为.因为平面ABCD,所以三棱锥的体积为,解得.因为,所以,所以的面积为.则三棱锥的体积为.在中,,,,则.设点B到平面PDQ的距离为h,则,解得,即点B到平面PDQ的距离为.【题目点拨】此题考察立体几何的证明,线面垂直只需证明线与平面内的两条相交直线分别垂直即可,第二问考察了三棱锥等体积法,通过变化顶点和底面进行转化,属于中档题目.19、(1),;(2).【解题分析】
(1)由函数的图象经过点且f(x)的图象有一条对称轴为直线,可得最大值A,且能得周期并求得ω,由五点法作图求出的值,可得函数的解析式.(2)利用正弦函数的单调性求得f(x)的单调递增区间.【题目详解】(1)函数f(x)=Asin(ωx+)(A>0,ω>0,)在一个周期内的图象经过点,,且f(x)的图象有一条对称轴为直线,故最大值A=4,且,∴,∴ω=1.所以.因为的图象经过点,所以,所以,.因为,所以,所以.(2)因为,所以,,所以,,即的单调递增区间为.【题目点拨】本题主要考查由函数y=Asin(ωx+)的性质求解析式,通常由函数的最大值求出A,由周期求出ω,由五点法作图求出的值,考查了正弦型函数的单调性问题,属于基础题.20、(1)见解析;(2).【解题分析】
(1)转化为证明MN⊥平面CND;(2)过点C作CH⊥ND与点H,则MH是MC在平面AMND内的射影,所以∠CMH即直线MC与平面AMND所成的角.【题目详解】(1)∵在矩形ABCD中,MN∥BC,∴MN⊥ND,MN⊥NC,又∵ND,NC是平面CND内的两条相交直线,∴MN⊥平面CND,又MN平面AMND,∴平面CND⊥平面AMND.(2)由(1)知∠CND=60°,又,AB=3,BC=2,MN∥BC,所以CN=1,DN=2,由余弦定理得,所以∠DCN=90°,过点C作CH⊥ND与点H,连接MH,则∠CMH即直线MC与平面AMND所成的角,又,所以故直线MC与平面AMND所成角的正弦值为.【题目点拨】本题考查面面平行证明和线面角.面面平行证明要转化为线面平行证明;求线面角关键在于作出直线在平面内的射影.21、(1)(2)【解题分析】
(1)求出的单调递增区间,令,得,可知区间,即可求出正数的最大值;(2)令,当时,,可将问题转化为在的零点问题,分类讨论即可求出答案.【题目详解】解:(1)由,得,.因为在上单调递增,令,得时单调递增,所以解得,可得正数的最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年围棋完形填空真题及答案
- 2025企业与董事会借款合同
- 2026年上海外国语大学贤达经济人文学院单招职业适应性测试必刷测试卷及答案1套
- 肖像使用授权协议书
- 2026年南阳科技职业学院单招职业倾向性测试必刷测试卷必考题
- 食堂服务协议书
- 2026年义乌工商职业技术学院单招职业技能测试必刷测试卷及答案1套
- 2026年云南国土资源职业学院单招职业技能测试题库含答案
- 印染纺织品整合项目投资计划书
- 2026年上海中医药大学单招职业技能测试必刷测试卷含答案
- 2025-2026学年西师大版(2024)小学数学二年级上册(全册)教学设计(附教材目录P234)
- 2025昭通市盐津县公安局警务辅助人员招聘(14人)备考考试题库附答案解析
- 自动扶梯施工方案编制
- 2.2运动与相互作用(第2课时二力平衡)学案-八年级科学浙教版上册
- 第一单元第二课《表现形式》课件人教版初中美术七年级上册
- 一例甲状腺癌患者的护理查房 2
- 国开2025年《行政领导学》形考作业1-4答案
- 具身智能在智能工厂生产流程中的应用可行性分析
- 餐饮连锁品牌营销推广策略案例分析
- 金坛区苏科版二年级上册劳动《06树叶书签》课件
- 检验员资格认定规定
评论
0/150
提交评论