




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省江阴市石庄中学数学高一下期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某林区改变植树计划,第一年植树增长率200%,以后每年的植树增长率都是前一年植树增长率的12,若成活率为100%,经过4A.14 B.454 C.62.已知为等差数列的前项和,,,则()A.2019 B.1010 C.2018 D.10113.若则所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若实数,满足约束条件,则的取值范围是()A. B. C. D.5.若角α的终边经过点P(-1,1A.sinα=1C.cosα=26.已知函数,则A.f(x)的最小正周期为π B.f(x)为偶函数C.f(x)的图象关于对称 D.为奇函数7.不等式的解集是()A. B.C.或 D.或8.若,,则方程有实数根的概率为()A. B. C. D.9.采用系统抽样方法从人中抽取32人做问卷调查,为此将他们随机编号为,分组后在第一组采用简单随机抽样的方法抽到的号码为.抽到的人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷.则抽到的人中,做问卷的人数为()A. B. C. D.10.直线与圆相交于M,N两点,若.则的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,,,,,为坐标原点,若、、三点共线,则的最小值是_______.12.在中,角A,B,C所对的边分别为a,b,c,,的平分线交AC于点D,且,则的最小值为________.13.设y=f(x)是定义域为R的偶函数,且它的图象关于点(2,0)对称,若当x∈(0,2)时,f(x)=x2,则f(19)=_____14.已知圆是圆上的一条动直径,点是直线上的动点,则的最小值是____.15.函数的单调递减区间是______.16.若满足约束条件,则的最小值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,求其定义域.18.已知是公差不为0的等差数列,,,成等比数列,且.(1)求数列的通项公式;(2)若,数列的前项和为,证明:.19.已知函数,(1)求的值;(2)求的单调递增区间.20.已知角的顶点与原点重合,始边与轴的非负半轴重合,终边过点.(1)求的值;(2)已知为锐角,,求的值.21.已知函数的图象关于直线对称,且图象上相邻两个最高点的距离为.(1)求和的值;(2)当时,求函数的最大值和最小值;(3)设,若的任意一条对称轴与x轴的交点的横坐标不属于区间,求c的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
由题意知增长率形成以首项为2,公比为12的等比数列,从而第n年的增长率为12n-2,则第n【题目详解】由题意知增长率形成以首项为2,公比为12的等比数列,从而第n年的增长率为1则第n年的林区的树木数量为an∴a1=3a0,a因此,经过4年后,林区的树木量是原来的树木量的454【题目点拨】本题考查数列的性质和应用,解题的关键在于建立数列的递推关系式,然后逐项进行计算,考查分析问题和解决问题的能力,属于中等题.2、A【解题分析】
利用基本元的思想,将已知条件转化为和的形式,列方程组,解方程组求得,进而求得的值.【题目详解】由于数列是等差数列,故,解得,故.故选:A.【题目点拨】本小题主要考查等差数列通项公式和前项和公式的基本量计算,属于基础题.3、C【解题分析】
根据已知不等式可得,;根据各象限内三角函数的符号可确定角所处的象限.【题目详解】由知:,在第三象限故选:【题目点拨】本题考查三角函数在各象限内的符号,属于基础题.4、D【解题分析】画出表示的可行域,如图所示的开放区域,平移直线,由图可知,当直线经过时,直线在纵轴上的截距取得最大值,此时有最小值,无最大值,的取值范围是,故选A.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5、B【解题分析】
利用三角函数的定义可得α的三个三角函数值后可得正确的选项.【题目详解】因为角α的终边经过点P-1,1,故r=OP=所以sinα=【题目点拨】本题考查三角函数的定义,属于基础题.6、C【解题分析】对于函数,它的最小正周期为=4π,故A选项错误;函数f(x)不满足f(–x)=f(x),故f(x)不是偶函数,故B选项错误;令x=,可得f(x)=sin0=0,故f(x)的图象关于对称,C正确;由于f(x–)=sin(x–)=–sin(x)=–cos(x)为偶函数,故D选项错误,故选C.7、B【解题分析】
由题意,∴,即,解得,∴该不等式的解集是,故选.8、B【解题分析】方程有实数根,则:,即:,则:,如图所示,由几何概型计算公式可得,满足题意的概率值为:.本题选择B选项.9、C【解题分析】从960人中用系统抽样方法抽取32人,则抽样距为k=,因为第一组号码为9,则第二组号码为9+1×30=39,…,第n组号码为9+(n-1)×30=30n-21,由451≤30n-21≤750,得,所以n=16,17,…,25,共有25-16+1=10(人).考点:系统抽样.10、A【解题分析】
可通过将弦长转化为弦心距问题,结合点到直线距离公式和勾股定理进行求解【题目详解】如图所示,设弦中点为D,圆心C(3,2),弦心距,又,由勾股定理可得,答案选A【题目点拨】圆与直线的位置关系解题思路常从两点入手:弦心距、勾股定理。处理过程中,直线需化成一般式二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
根据三点共线求得的的关系式,利用基本不等式求得所求表达式的最小值.【题目详解】依题意,由于三点共线,所以,化简得,故,当且仅当,即时,取得最小值【题目点拨】本小题主要考查三点共线的向量表示,考查利用基本不等式求最小值,属于基础题.12、32【解题分析】
根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【题目详解】如图所示,则△ABC的面积为,即ac=2a+2c,得,得,当且仅当,即3c=a时取等号;∴的最小值为32.故答案为:32.【题目点拨】本题考查三角形中的几何计算,属于中等题.13、﹣1.【解题分析】
根据题意,由函数的奇偶性与对称性分析可得,即函数是周期为的周期函数,据此可得,再由函数的解析式计算即可.【题目详解】根据题意,是定义域为的偶函数,则,又由得图象关于点对称,则,所以,即函数是周期为的周期函数,所以,又当时,,则,所以.故答案为:.【题目点拨】本题考查函数的奇偶性与周期性的性质以及应用,注意分析函数的周期性,属于基础题.14、【解题分析】
由题意得,==﹣=,即可求的最小值.【题目详解】圆,得,则圆心C(1,2),半径R=,如图可得:==﹣=,点是直线上,所以=()2=,∴的最小值是=.故答案为:.【题目点拨】本题考查了向量的数量积、转化和数形结合的思想,点到直线的距离,属于中档题.15、【解题分析】
求出函数的定义域,结合复合函数求单调性的方法求解即可.【题目详解】由,解得令,则函数在区间上单调递减,在区间上单调递增函数在定义域内单调递增函数的单调递减区间是故答案为:【题目点拨】本题主要考查了复合函数的单调性,属于中档题.16、3【解题分析】
在平面直角坐标系内,画出可行解域,平行移动直线,在可行解域内,找到直线在纵轴上截距最小时所经过点的坐标,代入目标函数中,求出目标函数的最小值.【题目详解】在平面直角坐标系中,约束条件所表示的平面区域如下图所示:当直线经过点时,直线纵轴上截距最小,解方程组,因此点坐标为,所以的最小值为.【题目点拨】本题考查了线性目标函数最小值问题,正确画出可行解域是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】
由使得分式和偶次根式有意义的要求可得到一元二次不等式,解不等式求得结果.【题目详解】由题意得:,即,解得:定义域为【题目点拨】本题考查具体函数定义域的求解问题,关键是明确使得分式和偶次根式有意义的基本要求,由此构造不等式求得结果.18、(1)(2)证明见解析【解题分析】
(1)由题意列式求得数列的首项和公差,然后代入等差数列的通项公式得答案.
(2)求出数列的通项,利用裂项相消法求出数列的前项和得答案.【题目详解】(1)差数列中,,成等比数列有:即,得所以又,即,.所以.(2)所以.所以所以【题目点拨】本题考查了等差数列的通项公式,等比数列的性质,裂项相消法求数列的前项和,是中档题.19、(1)(2)【解题分析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,(1)将代入,利用特殊角的三角函数可得的值;(2)利用正弦函数的单调性解不等式,可得到函数的递增区间.详解:(Ⅰ)===(Ⅱ)由题可得,函数的单调递增区间是点睛:本题主要考查三角函数的单调性、三角函数的恒等变换,属于中档题.函数的单调区间的求法:(1)代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2)图象法:画出三角函数图象,利用图象求函数的单调区间.20、(1);(2).【解题分析】
(1)利用三角函数的定义可求出,再根据二倍角的余弦公式即可求解.(2)由(1)可得,再利用同角三角函数的基本关系可得,由,利用两角差的正切公式即可求解.【题目详解】解:(1)依题意得,,,所以.(2)由(1)得,,故.因为,,,所以,又因为,所以,.所以,所以.【题目点拨】本小题主要考查同角三角函数关系、三角恒等变换等基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想等.21、(1),(2);.(3)【解题分析】
(1)由相邻最高点距离得周期,从而可得,由对称性可求得;(2)结合正弦函数性质可得最值.(3),先由半个周期大于得出的一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创意农业面试题目及答案
- 反馈技巧测试题及答案
- 微量泵的应用试题及答案
- 2024年纺织品检验员疑难解析试题及答案
- 2024年纺织品设计师证书试题及答案的前沿趋势试题及答案
- 民用航空概论试题及答案
- 后厨燃气安全试题及答案
- 国际美术设计师考试中的视觉创新方法试题及答案
- 建筑识图测试题及答案
- 浅析国际美术设计师考试的试题及答案
- 化工设备巡检培训
- 《汽车文化》2024年课程标准(含课程思政设计)
- 空气源热泵培训资料
- T∕HGJ 12400-2021 石油化工仪表线缆选型设计标准
- 化妆品合伙协议书
- DB64-266-2018:建筑工程资料管理规程-201-250
- 第四届全国院校民航空中乘务专业技能大赛理论考试题库(含答案)
- 高压电力管线施工技术方案
- 骆宾王诗词课件
- 水文自动监测数据传输规约DB41-T 1920-2019
- 《创伤失血性休克中国急诊专家共识(2023)》解读课件
评论
0/150
提交评论