版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省石家庄市鹿泉一中数学高一第二学期期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数则=()A. B. C.2 D.02.已知则的值为()A. B. C. D.3.圆心为且过原点的圆的方程是()A.B.C.D.4.在四边形中,如果,,那么四边形的形状是()A.矩形 B.正方形 C.菱形 D.直角梯形5.如图所示,某汽车品牌的标志可看作由两个同心圆构成,其中大、小圆的半径之比为,小圆内部被两条互相垂直的直径分割成四块.在整个图形中任选一点,则该点选自白色部分的概率为()A. B. C. D.6.已知向量,,则()A. B. C. D.7.如图,在正四棱锥中,,侧面积为,则它的体积为()A.4 B.8 C. D.8.为了从甲、乙两组中选一组参加“喜迎国庆共建小康”知识竞赛活动.班主任老师将两组最近的次测试的成绩进行统计,得到如图所示的茎叶图.若甲、乙两组的平均成绩分别是.则下列说法正确的是()A.,乙组比甲组成绩稳定,应选乙组参加比赛B.,甲组比乙组成绩稳定.应选甲组参加比赛C.,甲组比乙组成绩稳定.应选甲组参加比赛D.,乙组比甲组成绩稳定,应选乙组参加比赛9.已知在三角形中,,点都在同一个球面上,此球面球心到平面的距离为,点是线段的中点,则点到平面的距离是()A. B. C. D.110.已知函数,当时,取得最小值,则等于()A.9 B.7 C.5 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.把二进制数化为十进制数是:______.12.已知函数,对于上的任意,,有如下条件:①;②;③;④.其中能使恒成立的条件序号是__________.13.某中学从甲乙丙3人中选1人参加全市中学男子1500米比赛,现将他们最近集训中的10次成绩(单位:秒)的平均数与方差制成如下的表格:甲乙丙平均数250240240方差151520根据表中数据,该中学应选__________参加比赛.14.等差数列,,存在正整数,使得,,若集合有4个不同元素,则的可能取值有______个.15.已知等差数列,,,,则______.16.已知函数,若,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列中,,.(1)令,求证:数列为等比数列;(2)求数列的通项公式;(3)令,为数列的前项和,求.18.如图,已知点和点,,且,其中为坐标原点.(1)若,设点为线段上的动点,求的最小值;(2)若,向量,,求的最小值及对应的的值.19.已知函数.(1)求的最小正周期.(2)求在区间上的最小值.20.在梯形ABCD中,,,,.(1)求AC的长;(2)求梯形ABCD的高.21.已知数列的前项和为,满足,数列满足.(1)求数列、的通项公式;(2),求数列的前项和;(3)对任意的正整数,是否存在正整数,使得?若存在,请求出的所有值;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
先求得的值,进而求得的值.【题目详解】依题意,,故选B.【题目点拨】本小题主要考查分段函数求值,考查运算求解能力,属于基础题.2、B【解题分析】
直接利用两角和的正切函数化简求解即可.【题目详解】tan(α+β),tan(β),则tan(α)=tan((α+β)﹣(β)).故选B.【题目点拨】本题考查两角和与差的三角函数公式的应用,考查计算能力.3、D【解题分析】试题分析:设圆的方程为,且圆过原点,即,得,所以圆的方程为.故选D.考点:圆的一般方程.4、C【解题分析】试题分析:因为,所以,即四边形的对角线互相垂直,排除选项AD;又因为,所以四边形对边平行且相等,即四边形为平行四边形,但不能确定邻边垂直,所以只能确定为菱形.考点:1.向量相等的定义;2.向量的垂直;5、B【解题分析】
设大圆半径为,小圆半径为,求出白色部分面积和大圆面积,由几何概型概率公式可得.【题目详解】设大圆半径为,小圆半径为,则整个图形的面积为,白色部分的面积为,所以所求概率.故选:B.【题目点拨】本题考查几何概型,考查面积型的几何概型,属于基础题.6、D【解题分析】
根据平面向量的数量积,计算模长即可.【题目详解】因为向量,,则,,故选:D.【题目点拨】本题考查了平面向量的数量积与模长公式的应用问题,是基础题.7、A【解题分析】
连交于,连,根据正四棱锥的定义可得平面,取中点,连,则由侧面积和底面边长,求出侧面等腰三角形的高,在中,求出,即可求解.【题目详解】连交于,连,取中点,连因为正四棱锥,则平面,,侧面积,在中,,.故选:A.【题目点拨】本题考查正四棱锥结构特征、体积和表面积,属于基础题.8、D【解题分析】
由茎叶图数据分别计算两组的平均数;根据数据分布特点可知乙组成绩更稳定;由平均数和稳定性可知应选乙组参赛.【题目详解】;乙组的数据集中在平均数附近乙组成绩更稳定应选乙组参加比赛本题正确选项:【题目点拨】本题考查茎叶图的相关知识,涉及到平均数的计算、数据稳定性的估计等知识,属于基础题.9、D【解题分析】
利用数形结合,计算球的半径,可得半径为2,进一步可得该几何体为正四面体,可得结果.【题目详解】如图据题意可知:点都在同一个球面上可知为的外心,故球心必在过且垂直平面的垂线上因为,所以球心到平面的距离为即,又所以同理可知:所以该几何体为正四面体,由点是线段的中点所以,且平面,故平面所以点到平面的距离是故选:D【题目点拨】本题考查空间几何体的应用,以及点到面的距离,本题难点在于得到该几何体为正四面体,属中档题.10、B【解题分析】
先对函数进行配凑,使得能够使用均值不等式,再利用均值不等式,求得结果.【题目详解】因为故当且仅当,即时,取得最小值.故,则.故选:B.【题目点拨】本题考查均值不等式的使用,属基础题;需要注意均值不等式使用的条件.二、填空题:本大题共6小题,每小题5分,共30分。11、51【解题分析】110011(2)12、③④【解题分析】∵g(x)=[(﹣x)2﹣cos(﹣x)]=[x2﹣cosx]=g(x),∴g(x)是偶函数,∴g(x)图象关于y轴对称,∵g′(x)=x+sinx>0,x∈(0,],∴g(x)在(0,]上是增函数,在[﹣,0)是减函数,故③x1>|x2|;④时,g(x1)>g(x2)恒成立,故答案为:③④.点睛:此题考查的是函数的单调性的应用;已知表达式,根据表达式判断函数的单调性,和奇偶性,偶函数在对称区间上的单调性相反,根据单调性的定义可知,增函数自变量越大函数值越大,减函数自变量越大函数值越小。13、乙;【解题分析】
一个看均值,要均值小,成绩好;一个看方差,要方差小,成绩稳定.【题目详解】乙的均值比甲小,与丙相同,乙的方差与甲相同,但比丙小,即乙成绩好,又稳定,应选乙、故答案为乙.【题目点拨】本题考查用样本的数据特征来解决实际问题.一般可看均值(找均值好的)和方差(方差小的稳定),这样比较易得结论.14、4【解题分析】
由题意得为周期数列,集合有4个不同元素,得,在分别对取值讨论即可.【题目详解】设等差数列的首项为,公差为,则,,由题意,存在正整数,使得,又集合有4个不同元素,得,当时,,即,,或(舍),,取,则,在单位圆上的4个等分点可取到4个不同的正弦值,即集合可取4个不同元素;当,,即,,在单位圆上的5个等分点不可能取到4个不同的正弦值,故舍去;同理可得:当,,,集合可取4个不同元素;当时,,单位圆上至少9个等分点取4个不同的正弦值,必有至少3个相等的正弦值,不符合集合的元素互异性,故不可取应舍去.故答案:4.【题目点拨】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,理解分析问题能力,属于难题.15、【解题分析】
利用等差中项的基本性质求得,,并利用等差中项的性质求出的值,由此可得出的值.【题目详解】由等差中项的性质可得,同理,由于、、成等差数列,所以,则,因此,.故答案为:.【题目点拨】本题考查利用等差中项的性质求值,考查计算能力,属于基础题.16、2【解题分析】不妨设a>1,
则令f(x)=|loga|x-1||=b>0,
则loga|x-1|=b或loga|x-1|=-b;
故x1=-ab+1,x2=-a-b+1,x3=a-b+1,x4=ab+1,
故故答案为2点睛:本题考查了绝对值方程及对数运算的应用,同时考查了指数的运算,注意计算的准确性.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)(3)【解题分析】
(1)计算,得证数列为等比数列.(2)先求出的通项公式,再计算数列的通项公式.(3)计算,根据错位相减法和分组求和法得到答案.【题目详解】(1),,,故数列是以为首项,以为公比的等比数列.(2)由(1)知,由,得数列的通项公式为.(3)由(2)知,记.有.两式作差得,得,则.【题目点拨】本题考查了数列的证明,数列通项公式,分组求和,错位相减法,意在考查学生的计算能力.18、(1);(2),或.【解题分析】
(1)设,求出,把表示成关于的二次函数;(2)利用向量的坐标运算得,令把表示成关于的二次函数,再求最小值.【题目详解】(1)设,又,所以,,所以当时,取得最小值.(2)由题意得,,,则=,令,因为,所以,又,所以,,所以当时,取得最小值,即,解得或,所以当或时,取得最小值.【题目点拨】本题考查利用向量的坐标运算求向量的模和数量积,在求解过程中用到知一求二的思想方法,即已知三个中的一个,另外两个均可求出.19、(1);(2).【解题分析】试题分析:本题主要考查倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(Ⅰ)先利用倍角公式将降幂,再利用两角和的正弦公式将化简,使之化简成的形式,最后利用计算函数的最小正周期;(Ⅱ)将的取值范围代入,先求出的范围,再数形结合得到三角函数的最小值.试题解析:(Ⅰ)∵,∴的最小正周期为.(Ⅱ)∵,∴.当,即时,取得最小值.∴在区间上的最小值为.考点:倍角公式、两角和的正弦公式、三角函数的周期、三角函数的最值.20、(1)(2).【解题分析】
(1)首先计算,再利用正弦定理计算得到答案.(2)中,由余弦定理得,作高,在直角三角形中利用三角函数得到高的大小.【题目详解】(1)在中,,.由正弦定理得:,即.(2)在中,由余弦定理得:,整理得,解得.过点D作于E,则DE为梯形ABCD的高.,,.在直角中,.即梯形ABCD的高为.【题目点拨】本题考查了正弦定理,余弦定理,意在考查学生的计算能力和解决问题的能力.21、(1),;(2)见解析;(3)存在,.【解题分析】
(1)利用可得,从而可得为等比数列,故可得其通项公式.用累加法可求的通项.(2)利用分组求和法可求,注意就的奇偶性分类讨论.(3)根据的通项可得,故考虑的解可得满足条件的的值.【题目详解】(1)在数列中,当时,.当时,由得,因为,故,所以数列是以为首项,为公比的等比数列即.在数列中,当时,有,由累加法得,,.当时,也符合上式,所以.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程缺陷处理协议书
- 烈士公墓管理协议书
- 小商场装修合同范本
- 小区垃圾转让协议书
- 执行阶段还款协议书
- 扶贫ppp协议合同
- 扶贫协议书格式范本
- 批发入会协议书模板
- 找工作保安合同范本
- 承包各种民房协议书
- 光伏发电主要材料质量控制措施
- 存货管理培训课件
- 社区医院保洁管理制度
- 严重精神障碍患者家庭护理-培训课件
- CNAS-EC-013-2007 质量管理体系认证与法律法规要求的关系
- 2025至2030中国包装纸行业产业运行态势及投资规划深度研究报告
- DLT5210.1-2021电力建设施工质量验收规程第1部分-土建工程
- 温室气体排放核算与报告要求 第11部分:煤炭生产企业 编制说明
- T/CCAS 007-2019水泥产能核定标准
- 广州水务笔试题目及答案
- 电商酒水供销合同协议
评论
0/150
提交评论