版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市一七一中学高一数学第二学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在区间上随机地取一个数,则事件“”发生的概率为()A. B. C. D.2.在1和19之间插入个数,使这个数成等差数列,若这个数中第一个为,第个为,当取最小值时,的值是()A.4 B.5 C.6 D.73.与直线平行,且到的距离为的直线方程为A. B. C. D.4.已知是平面内两个互相垂直的向量,且,若向量满足,则的最大值是()A.1 B. C.3 D.5.在中,角,,所对的边分别为,,,若,则的值为()A. B. C. D.6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人最后一天走的路程为().A.24里 B.12里 C.6里. D.3里7.阅读如图所示的算法框图,输出的结果S的值为A.8 B.6 C.5 D.48.设是等差数列的前项和,若,则()A. B. C. D.9.已知两点,,则()A. B. C. D.10.已知1,a,b,c,5五个数成等比数列,则b的值为()A. B. C. D.3二、填空题:本大题共6小题,每小题5分,共30分。11.从甲、乙、丙等5名候选学生中选2名作为青年志愿者,则甲、乙、丙中有2个被选中的概率为________.12.数列的前项和,则__________.13.已知的三边分别是,且面积,则角__________.14.我国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天走的路程为__________里.15.某公司当月购进、、三种产品,数量分别为、、,现用分层抽样的方法从、、三种产品中抽出样本容量为的样本,若样本中型产品有件,则的值为_______.16.已知数列中,,,,则的值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足.(1)若,证明:数列是等比数列,求的通项公式;(2)求的前项和.18.已知数列满足:,,.(1)求、、;(2)求证:数列为等比数列,并求其通项公式;(3)求和.19.如图,在三棱柱中,平面平面,,,为棱的中点.(1)证明:;(2)求三棱柱的高.20.如图,是正方形,是正方形的中心,底面是的中点.(1)求证:平面;(2)若,求三棱锥的体积.21.已知等差数列满足,且.(1)求数列的通项;(2)求数列的前项和的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由得,,所以,由几何概型概率的计算公式得,,故选.考点:1.几何概型;2.对数函数的性质.2、B【解题分析】
设等差数列公差为,可得,再利用基本不等式求最值,从而求出答案.【题目详解】设等差数列公差为,则,从而,此时,故,所以,即,当且仅当,即时取“=”,又,解得,所以,所以,故选:B.【题目点拨】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.3、B【解题分析】试题分析:与直线平行的直线设为与的距离为考点:两直线间的距离点评:两平行直线间的距离4、D【解题分析】
设出平面向量的夹角,求出的夹角,最后利用平面向量数量积的运算公式进行化简等式,最后利用辅助角公式求出的最大值.【题目详解】设平面向量的夹角为,因为是平面内两个互相垂直的向量,所以平面向量的夹角为,因为是平面内两个互相垂直的向量,所以.,,,其中,显然当时,有最大值,即.故选:D【题目点拨】本题考查平面向量数量积的性质及运算,属于中档题.5、B【解题分析】
化简式子得到,利用正弦定理余弦定理原式等于,代入数据得到答案.【题目详解】利用正弦定理和余弦定理得到:故选B【题目点拨】本题考查了正弦定理,余弦定理,三角恒等变换,意在考查学生的计算能力.6、C【解题分析】
由题意可知,每天走的路程里数构成以为公比的等比数列,由求得首项,再由等比数列的通项公式求得该人最后一天走的路程.【题目详解】解:记每天走的路程里数为,可知是公比的等比数列,由,得,解得:,,故选C.【题目点拨】本题考查等比数列的通项公式,考查了等比数列的前项和,是基础的计算题.7、B【解题分析】
判断框,即当执行到时终止循环,输出.【题目详解】初始值,代入循环体得:,,,输出,故选A.【题目点拨】本题由于循环体执行的次数较少,所以可以通过列举每次执行后的值,直到循环终止,从而得到的输出值.8、D【解题分析】
根据等差数列片断和的性质得出、、、成等差数列,并将和都用表示,可得出的值.【题目详解】根据等差数列的性质,若数列为等差数列,则也成等差数列;又,则数列是以为首项,以为公差的等差数列,则,故选D.【题目点拨】本题考查等差数列片断和的性质,再利用片断和的性质时,要注意下标之间的倍数关系,结合性质进行求解,考查运算求解能力,属于中等题.9、C【解题分析】
直接利用两点间距离公式求解即可.【题目详解】因为两点,,则,故选.【题目点拨】本题主要考查向量的模,两点间距离公式的应用.10、A【解题分析】
根据等比数列奇数项也成等比数列,求解.【题目详解】因为1,a,b,c,5五个数成等比数列,所以也成等比数列,等比数列奇数项的符号一致,,.故选A.【题目点拨】本题考查了等比数列的基本性质,属于简单题型,但需注意这个隐含条件.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】因为从5名候选学生中任选2名学生的方法共有10种,而甲、乙、丙中有2个被选中的方法有3种,所以甲、乙、丙中有2个被选中的概率为.12、【解题分析】
根据数列前项和的定义即可得出.【题目详解】解:因为所以.故答案为:.【题目点拨】考查数列的定义,以及数列前项和的定义,属于基础题.13、【解题分析】试题分析:由,可得,整理得,即,所以.考点:余弦定理;三角形的面积公式.14、192【解题分析】设每天走的路程里数为由题意知是公比为的等比数列∵∴∴故答案为15、.【解题分析】
利用分层抽样每层抽样比和总体的抽样比相等,列等式求出的值.【题目详解】在分层抽样中,每层抽样比和总体的抽样比相等,则有,解得,故答案为:.【题目点拨】本题考查分层抽样中的相关计算,解题时要充分利用各层抽样比与总体抽样比相等这一条件列等式求解,考查运算求解能力,属于基础题.16、1275【解题分析】
根据递推关系式可求得,从而利用并项求和的方法将所求的和转化为,利用等差数列求和公式求得结果.【题目详解】由得:则,即本题正确结果:【题目点拨】本题考查并项求和法、等差数列求和公式的应用,关键是能够利用递推关系式得到数列相邻两项之间的关系,从而采用并项的方式来进行求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,;(2).【解题分析】
(1)由条件可得,即,运用等比数列的定义,即可得到结论;运用等比数列的通项公式可得所求通项。(2)数列的求和方法:错位相减法,结合等比数列的求和公式,可得所求的和。【题目详解】解:(1)证明:由,得,又,,又,所以是首相为1,公比为2的等比数列;,。(2)前项和,,两式相减可得:化简可得【题目点拨】本题考查利用辅助数列求通项公式,以及错位相减求和,考查学生的计算能力,是一道基础题。18、(1);(2)证明见解析;(3).【解题分析】
(1)直接带入递推公式即可(2)证明等于一个常数即可。(3)根据(2)的结果即可求出,从而求出。【题目详解】(1),,可得;,;(2)证明:,可得数列为公比为,首项为等比数列,即;(3)由(2)可得,.【题目点拨】本题主要考查了根据通项求数列中的某一项,以及证明是等比数列和求前偶数项和的问题,在这里主要用了分组求和的方法。19、(1)证明见解析(2)【解题分析】
(1)连接,,作为棱的中点,连结,,由平面平面,得到平面,则,再由,即可证明平面,从而得证;(2)根据等体积法求出点面距.【题目详解】(1)证明:连接,.∵,,∴是等边三角形.作为棱的中点,连结,,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴平行四边形是菱形.∴.又,分别为,的中点,∴,∴.又,平面,平面.∴平面.又平面,∴.(2)解:连接,∵,,∴为正三角形.∵为的中点,∴,同理可得又∵平面平面,且平面平面,平面,∴平面.∴,又三棱柱的高即点到平面的距离.在中,,,则.又∵,∴,则.【题目点拨】本题考查线面垂直,线线垂直的证明,三棱锥的体积及点到平面的距离的计算,属于中档题.20、(1)证明见解析;(2).【解题分析】
(1)由平面得出,由底面为正方形得出,再利用直线与平面垂直的判定定理可证明平面;(2)由勾股定理计算出,由点为线段的中点得知点到平面的距离等于,并计算出的面积,最后利用锥体的体积公式可计算出三棱锥的体积.【题目详解】(1)平面,平面,,又为正方形,,又平面,平面,,平面;(2)由题意知:,又,,,点到面的距离为,.【题目点拨】本题考查直线与平面垂直的判定,考查三棱锥体积的计算,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公楼装修施工标准流程
- 电信运营商投诉处理流程指南
- 汽车维修厂安全操作规程汇编
- 物流仓库智能化改造计划
- 津17SZ-1 天津市市政基础设施工程施工图设计审查要点 道路篇
- 2025年湖南省岳阳市汩罗市事业单位安置定向招聘退役军士考试18人招聘笔试备考题库及答案详解(有一套)
- 临床医师资格实践考试官方指南
- 指示代词用法练习题及解析讲解
- 六年级作文教学方案:美好生活主题
- 六年级读书500字
- 胃肠间质瘤规范化外科治疗中国专家共识(2025版)
- 无人机在消防救援中的应用与前景
- 中国妊娠期糖尿病母儿共同管理指南(2024版)解读
- 人工智能时代高校毕业生就业观的引导路径研究
- 东南大学版三基内科
- 204张思维导图速记初中1600单词(完整排版-直接打印)
- 2024年天津市河北区高一年级上期中-英语试卷
- 人教版(2024新版)七年级上册英语期中测试卷(含答案)
- 传感器技术-自动检测与转换技术期末测试卷2含答案
- 人教版初中九年级全册英语单词表(完整版)
- 专利产品授权销售协议合同
评论
0/150
提交评论