版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市十二校数学高一下期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,分别为角的对边,若,且,则边=()A. B. C. D.2.已知数列的前项和为,满足,则通项公式等于().A. B. C. D.3.已知数列且是首项为2,公差为1的等差数列,若数列是递增数列,且满足,则实数a的取值范围是()A. B.C. D.4.某几何体的三视图如图所示(实线部分),若图中小正方形的边长均为1,则该几何体的体积是()A. B. C. D.5.若数列前12项的值各异,且对任意的都成立,则下列数列中可取遍前12项值的数列为()A. B. C. D.6.函数的图象是()A. B. C. D.7.已知点在第四象限,则角在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.若一个正四棱锥的侧棱和底面边长相等,则该正四棱锥的侧棱和底面所成的角为()A.30° B.45° C.60° D.90°9.若直线xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.10.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若,,则线段的长为()A.3 B.3.5 C.4 D.4.5二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,且,则__________.12.在ΔABC中,角A,B,C所对的对边分别为a,b,c,若A=30∘,a=7,b=213.设函数(是常数,).若在区间上具有单调性,且,则的最小正周期为_________.14.圆与圆的公共弦长为________.15.己知为数列的前项和,且,则_____.16.已知数列满足,,,记数列的前项和为,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求的坐标;(2)设,求数列的通项公式;(3)设,,其中为常数,,求的值.18.某小型企业甲产品生产的投入成本x(单位:万元)与产品销售收入y(单位:万元)存在较好的线性关系,下表记录了最近5次该产品的相关数据.x(万元)357911y(万元)810131722(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,判断该企业甲产品投入成本12万元的毛利率更大还是投入成本15万元的毛利率更大(毛利率)?相关公式:,.19.已知,,求的值.20.已知函数(,)为奇函数,且相邻两对称轴间的距离为.(1)当时,求的单调递减区间;(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.21.已知α,β为锐角,tanα=(1)求sin2α(2)求tanβ
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
由利用正弦定理化简,再利用余弦定理表示出cosA,整理化简得a2b2+c2,与,联立即可求出b的值.【题目详解】由sinB=8cosAsinC,利用正弦定理化简得:b=8c•cosA,将cosA代入得:b=8c•,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),则b=1.故选B【题目点拨】此题考查了正弦、余弦定理,熟练掌握定理,准确计算是解本题的关键,是中档题2、C【解题分析】
代入求得;根据可证得数列为等比数列,从而利用等比数列通项公式求得结果.【题目详解】当时,当且时,则,即数列是以为首项,为公比的等比数列本题正确选项:【题目点拨】本题考查数列通项公式的求解,关键是能够利用得到数列为等比数列,属于常规题型.3、D【解题分析】
根据等差数列和等比数列的定义可确定是以为首项,为公比的等比数列,根据等比数列通项公式,进而求得;由数列的单调性可知;分别在和两种情况下讨论可得的取值范围.【题目详解】由题意得:,,是以为首项,为公比的等比数列为递增数列,即①当时,,,即只需即可满足②当时,,,即只需即可满足综上所述:实数的取值范围为故选:【题目点拨】本题考查根据数列的单调性求解参数范围的问题,涉及到等差和等比数列定义的应用、等比数列通项公式的求解、对数运算法则的应用等知识;解题关键是能够根据单调性得到关于变量和的关系式,进而通过分离变量的方式将问题转化为变量与关于的式子的最值的大小关系问题.4、A【解题分析】
由三视图得出原几何体是由半个圆锥与半个圆柱组成的组合体,并且由三视图得出圆柱和圆锥的底面半径,圆锥的高,圆柱的高,再由圆柱和圆锥的体积公式得解.【题目详解】由三视图可知,几何体是由半个圆锥与半个圆柱组成的组合体,其中圆柱和圆锥的底面半径,圆锥的高,圆柱的高所以圆柱的体积,圆锥的体积,所以组合体的体积.故选B.【题目点拨】本题主要考查空间几何体的三视图和空间几何体圆柱和圆锥的体积,属于基础题.5、C【解题分析】
根据题意可知利用除以12所得的余数分析即可.【题目详解】由题知若要取遍前12项值的数列,则需要数列的下标能够取得除以12后所有的余数.因为12的因数包括3,4,6,故不能除以12后取所有的余数.如除以12的余数只能取1,4,7,10的循环余数.又5不能整除12,故能够取得除以12后取所有的余数.故选:C【题目点拨】本题主要考查了数列下标整除与余数的问题,属于中等题型.6、D【解题分析】
求出分段函数的解析式,由此确定函数图象.【题目详解】由于,根据函数解析式可知,D选项符合.故选:D【题目点拨】本小题主要考查分段函数图象的判断,属于基础题.7、B【解题分析】
根据第四象限内点的坐标特征,再根据正弦值、正切值的正负性直接求解即可.【题目详解】因为点在第四象限,所以有:是第二象限内的角.故选:B【题目点拨】本题考查了正弦值、正切值的正负性的判断,属于基础题.8、B【解题分析】
正四棱锥,连接底面对角线,在中,为侧棱与地面所成角,通过边的关系得到答案.【题目详解】正四棱锥,连接底面对角线,,易知为等腰直角三角形.中点为,又正四棱锥知:底面即为所求角为,答案为B【题目点拨】本题考查了线面夹角的计算,意在考察学生的计算能力和空间想象力.9、C【解题分析】
将1,2代入直线方程得到1a+2【题目详解】将1,2代入直线方程得到1a+b=(a+b)(当a=2故答案选C【题目点拨】本题考查了直线方程,均值不等式,1的代换是解题的关键.10、A【解题分析】
设,可得,求得,在中,运用余弦定理,解方程可得所求值.【题目详解】设,可得,且,在中,可得,即为,化为,解得舍去),故选.【题目点拨】本题考查三角形的余弦定理,考查方程思想和运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】不妨设a>1,
则令f(x)=|loga|x-1||=b>0,
则loga|x-1|=b或loga|x-1|=-b;
故x1=-ab+1,x2=-a-b+1,x3=a-b+1,x4=ab+1,
故故答案为2点睛:本题考查了绝对值方程及对数运算的应用,同时考查了指数的运算,注意计算的准确性.12、32或【解题分析】
由余弦定理求出c,再利用面积公式即可得到答案。【题目详解】由于在ΔABC中,A=30∘,a=7,b=23,根据余弦定理可得:a2=b所以当c=1时,ΔABC的面积S=12bcsinA=32故ΔABC的面积等于32或【题目点拨】本题考查余弦定理与面积公式在三角形中的应用,属于中档题。13、【解题分析】
由在区间上具有单调性,且知,函数的对称中心为,由知函数的对称轴为直线,设函数的最小正周期为,所以,,即,所以,解得,故答案为.考点:函数的对称性、周期性,属于中档题.14、【解题分析】
先求出公共弦方程为,再求出弦心距后即可求解.【题目详解】两圆方程相减可得公共弦直线方程为,圆的圆心为,半径为,圆心到的距离为,公共弦长为.故答案为:.【题目点拨】本题考查了圆的一般方程以及直线与圆位置关系的应用,属于基础题.15、【解题分析】
根据可知,得到数列为等差数列;利用等差数列前项和公式构造方程可求得;利用等差数列通项公式求得结果.【题目详解】由得:,即:数列是公差为的等差数列又,解得:本题正确结果:【题目点拨】本题考查等差数列通项公式、前项和公式的应用,关键是能够利用判断出数列为等差数列,进而利用等差数列中的相关公式来进行求解.16、7500【解题分析】
讨论的奇偶性,分别化简递推公式,根据等差数列的定义得的通项公式,进而可求.【题目详解】当是奇数时,=﹣1,由,得,所以,,,…,…是以为首项,以2为公差的等差数列,当为偶数时,=1,由,得,所以,,,…,…是首项为,以4为公差的等差数列,则,所以.故答案为:7500【题目点拨】本题考查数列递推公式的化简,等差数列的通项公式,以及等差数列前n项和公式的应用,也考查了分类讨论思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)当时,;当或时,.【解题分析】
(1)利用题中定义结合平面向量加法的坐标运算可得出结果;(2)利用等差数列的求和公式和平面向量加法的坐标运算可得出数列的通项公式;(3)先计算出的表达式,然后分、、三种情况计算出的值.【题目详解】(1)由题意得;(2);(3).①当时,;②当时,;③当时,.【题目点拨】本题考查平面向量坐标的线性运算,同时也考查等差数列求和以及数列极限的运算,计算时要充分利用数列极限的运算法则进行求解,综合性较强,属于中等题.18、(1);(2)12万元的毛利率更大【解题分析】
(1)根据题意代入数值分别算出与即可得解;(2)分别把与代入线性回归方程算出再算出毛利率即可得解.【题目详解】(1)由题意,.,,,故y关于x的线性回归方程为.(2)当时,,对应的毛利率为,当时,,对应的毛利率为,故投入成本12万元的毛利率更大.【题目点拨】本题考查了线性回归方程的求解和应用,考查了计算能力,属于基础题.19、【解题分析】
∵,且,∴,则,∴===-.考点:本题考查了三角恒等变换20、(1),](2)值域为[,].【解题分析】
(1)利用三角恒等变换化简的解析式,根据条件,可求出周期和,结合奇函数性质,求出,再用整体代入法求出内的递减区间;(2)利用函数的图象变换规律,求出的解析式,再利用正弦函数定义域,即可求出时的值域.【题目详解】解:(1)由题意得,因为相邻两对称轴之间距离为,所以,又因为函数为奇函数,所以,∴,因为,所以故函数令.得.令得,因为,所以函数的单调递减区间为,](2)由题意可得,因为,所以所以,.即函数的值域为[,].【题目点拨】本题主要考查正弦函数在给定区间内的单调性和值域,包括周期性,奇偶性,单调性和最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 简单工装合同
- 第1课 走进思维世界 复习课件 2026年高考政治一轮复习 选择修必修三 逻辑与思维
- 充电桩用电合同
- 退休工人没签合同
- 个人房屋合同
- 石材验货合同
- 买玛莎拉蒂购车合同
- 枝江租房合同
- 泛美就业协议书
- 购房佣金协议书
- 画家经纪人合同
- 科普百科类绘本创作要点
- 人教版(2024)七年级数学上册期中检测数学试卷(含解析)
- 2025年全国2卷读后续写+课件-2026届高三英语上学期一轮复习专项
- 创新方法大赛理论知识考核试题题库及答案
- 2022室外排水设施设计与施工-钢筋混凝土化粪池22S702
- 住院患者静脉血栓栓塞症的预防护理(试题及答案)
- 如何提高静脉穿刺技术
- 2022年南京六合经济技术开发集团有限公司招聘笔试试题及答案解析
- 心脏听诊操作考核评分标准
- 企业安全生产责任落实情况检查表
评论
0/150
提交评论